Connect with us

Tech

Aging clocks aim to predict how long you’ll live

Published

on

Aging clocks aim to predict how long you’ll live


Most aging clocks estimate a person’s biological age based on patterns of epigenetic markers—specifically, chemical tags called methyl groups that are layered onto DNA and affect how genes are expressed. The pattern of this methylation across thousands of sites on DNA seems to change as we age, although it’s not clear why.

Some clocks promise to predict life span by estimating how a person’s body has aged, while others act more like a speedometer, tracking the pace of aging. Clocks have been developed for specific organs of the body, and for multiple animal species.

Proponents of aging clocks are already trying to use them to show that anti-aging interventions can make individuals biologically younger. But we don’t yet know enough about clocks, or what they tell us, to make such claims. 

Tracking time

The first epigenetic aging clock was developed in 2011 when Steve Horvath at the University of California, Los Angeles, volunteered to participate in a study with his identical twin brother, Markus. The study was looking for epigenetic markers in saliva samples that might explain sexual orientation. (Steve is straight and Markus is gay.) 

As a biostatistician, Horvath offered to analyze the results and found no link to sexual orientation. But he also looked for links between the volunteers’ age and epigenetic markers. “I fell off my chair, because the signal was huge for aging,” he says. 

He found that patterns of methylation could predict a person’s age in years, although the estimates differed on average by around five years from each person’s chronological age.

Horvath has worked on aging clocks ever since. In 2013 he developed the eponymous Horvath clock, still among the best-known aging clocks today, which he calls a “pan-tissue” clock because it can estimate the age of pretty much any organ in the body. Horvath built the clock using methylation data from 8,000 samples representing 51 body tissues and cell types. With this data, he trained an algorithm to predict a person’s chronological age from a cell sample.

Other groups have developed similar clocks, and hundreds exist today. But Horvath estimates that fewer than 10 are widely used in human studies, primarily to assess how diet, lifestyle, or supplements might affect aging.

Measuring age

What can all these clocks tell us? It depends. Most clocks are designed to predict chronological age. But Morgan Levine at the Yale School of Medicine in New Haven, Connecticut, says: “To me, that’s not the goal. We can ask someone how old they are.” 

In 2018, Levine, Horvath, and their colleagues developed a clock based on nine biomarkers, including blood levels of glucose and white blood cells, as well as a person’s age in years.

They used data collected from thousands of people in the US as part of a different study, which followed the participants for years. The resulting clock, called DNAm PhenoAge, is better at estimating biological age than clocks based solely on chronological age, says Levine. 

A one-year increase in what Levine calls “phenotypic” age, according to the clock, is associated with a 9% increase in death from any cause, as well as an increased risk of dying from cancer, diabetes, or heart disease. If your biological age is higher than your chronological age, it’s fair to assume you’re aging faster than average, says Levine. 

But that might not be the case, says Daniel Belsky at the Columbia University Mailman School of Public Health in New York City. He says there are many reasons why biological age might exceed a person’s years.

Belsky and his colleagues have developed a tool to more accurately measure the rate of biological aging, based on work that tracked the health outcomes of 954 volunteers at four ages between their mid-20s and mid-40s. The researchers looked at biomarkers believed to indicate how well various organs are functioning, as well as others linked to general health. Then they developed an epigenetic “speedometer” to predict how these values would change over time.

Another popular clock, also developed by Horvath and his colleagues, is called GrimAge, in a nod to the Grim Reaper. Horvath claims it’s the best at predicting mortality, and he’s been applying it to his own blood samples. 

His results were consistent with his chronological age two years ago, he says, but when he ran another test around six months ago, his GrimAge was four years older than his age in years. That doesn’t mean Horvath has shaved four years off his life span—“You cannot directly relate it to how long you’ll live,” he says—but he thinks it means he’s aging faster than he should be, though he’s still puzzled as to why. 

Noisy clocks

Others have used changes in their results to infer that their rate of aging has slowed, usually after they started taking a supplement. But in many cases, the change can be explained by the fact that many epigenetic aging clocks are “noisy”—prone to random errors that distort their results. 

The problem is that at each area of the body where methyl groups attach to DNA, very slight changes take place over time. These subtle changes can be magnified by errors in methylation estimates. It ends up being a huge problem, says Levine, and results can wind up being off by decades. 

Tech

The hunter-gatherer groups at the heart of a microbiome gold rush

Published

on

The hunter-gatherer groups at the heart of a microbiome gold rush


The first step to finding out is to catalogue what microbes we might have lost. To get as close to ancient microbiomes as possible, microbiologists have begun studying multiple Indigenous groups. Two have received the most attention: the Yanomami of the Amazon rainforest and the Hadza, in northern Tanzania. 

Researchers have made some startling discoveries already. A study by Sonnenburg and his colleagues, published in July, found that the gut microbiomes of the Hadza appear to include bugs that aren’t seen elsewhere—around 20% of the microbe genomes identified had not been recorded in a global catalogue of over 200,000 such genomes. The researchers found 8.4 million protein families in the guts of the 167 Hadza people they studied. Over half of them had not previously been identified in the human gut.

Plenty of other studies published in the last decade or so have helped build a picture of how the diets and lifestyles of hunter-gatherer societies influence the microbiome, and scientists have speculated on what this means for those living in more industrialized societies. But these revelations have come at a price.

A changing way of life

The Hadza people hunt wild animals and forage for fruit and honey. “We still live the ancient way of life, with arrows and old knives,” says Mangola, who works with the Olanakwe Community Fund to support education and economic projects for the Hadza. Hunters seek out food in the bush, which might include baboons, vervet monkeys, guinea fowl, kudu, porcupines, or dik-dik. Gatherers collect fruits, vegetables, and honey.

Mangola, who has met with multiple scientists over the years and participated in many research projects, has witnessed firsthand the impact of such research on his community. Much of it has been positive. But not all researchers act thoughtfully and ethically, he says, and some have exploited or harmed the community.

One enduring problem, says Mangola, is that scientists have tended to come and study the Hadza without properly explaining their research or their results. They arrive from Europe or the US, accompanied by guides, and collect feces, blood, hair, and other biological samples. Often, the people giving up these samples don’t know what they will be used for, says Mangola. Scientists get their results and publish them without returning to share them. “You tell the world [what you’ve discovered]—why can’t you come back to Tanzania to tell the Hadza?” asks Mangola. “It would bring meaning and excitement to the community,” he says.

Some scientists have talked about the Hadza as if they were living fossils, says Alyssa Crittenden, a nutritional anthropologist and biologist at the University of Nevada in Las Vegas, who has been studying and working with the Hadza for the last two decades.

The Hadza have been described as being “locked in time,” she adds, but characterizations like that don’t reflect reality. She has made many trips to Tanzania and seen for herself how life has changed. Tourists flock to the region. Roads have been built. Charities have helped the Hadza secure land rights. Mangola went abroad for his education: he has a law degree and a master’s from the Indigenous Peoples Law and Policy program at the University of Arizona.

Continue Reading

Tech

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan

Published

on

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan


Over the last couple of decades, scientists have come to realize just how important the microbes that crawl all over us are to our health. But some believe our microbiomes are in crisis—casualties of an increasingly sanitized way of life. Disturbances in the collections of microbes we host have been associated with a whole host of diseases, ranging from arthritis to Alzheimer’s.

Some might not be completely gone, though. Scientists believe many might still be hiding inside the intestines of people who don’t live in the polluted, processed environment that most of the rest of us share. They’ve been studying the feces of people like the Yanomami, an Indigenous group in the Amazon, who appear to still have some of the microbes that other people have lost. 

But there is a major catch: we don’t know whether those in hunter-gatherer societies really do have “healthier” microbiomes—and if they do, whether the benefits could be shared with others. At the same time, members of the communities being studied are concerned about the risk of what’s called biopiracy—taking natural resources from poorer countries for the benefit of wealthier ones. Read the full story.

—Jessica Hamzelou

Eric Schmidt has a 6-point plan for fighting election misinformation

—by Eric Schmidt, formerly the CEO of Google, and current cofounder of philanthropic initiative Schmidt Futures

The coming year will be one of seismic political shifts. Over 4 billion people will head to the polls in countries including the United States, Taiwan, India, and Indonesia, making 2024 the biggest election year in history.

Continue Reading

Tech

Navigating a shifting customer-engagement landscape with generative AI

Published

on

Navigating a shifting customer-engagement landscape with generative AI


A strategic imperative

Generative AI’s ability to harness customer data in a highly sophisticated manner means enterprises are accelerating plans to invest in and leverage the technology’s capabilities. In a study titled “The Future of Enterprise Data & AI,” Corinium Intelligence and WNS Triange surveyed 100 global C-suite leaders and decision-makers specializing in AI, analytics, and data. Seventy-six percent of the respondents said that their organizations are already using or planning to use generative AI.

According to McKinsey, while generative AI will affect most business functions, “four of them will likely account for 75% of the total annual value it can deliver.” Among these are marketing and sales and customer operations. Yet, despite the technology’s benefits, many leaders are unsure about the right approach to take and mindful of the risks associated with large investments.

Mapping out a generative AI pathway

One of the first challenges organizations need to overcome is senior leadership alignment. “You need the necessary strategy; you need the ability to have the necessary buy-in of people,” says Ayer. “You need to make sure that you’ve got the right use case and business case for each one of them.” In other words, a clearly defined roadmap and precise business objectives are as crucial as understanding whether a process is amenable to the use of generative AI.

The implementation of a generative AI strategy can take time. According to Ayer, business leaders should maintain a realistic perspective on the duration required for formulating a strategy, conduct necessary training across various teams and functions, and identify the areas of value addition. And for any generative AI deployment to work seamlessly, the right data ecosystems must be in place.

Ayer cites WNS Triange’s collaboration with an insurer to create a claims process by leveraging generative AI. Thanks to the new technology, the insurer can immediately assess the severity of a vehicle’s damage from an accident and make a claims recommendation based on the unstructured data provided by the client. “Because this can be immediately assessed by a surveyor and they can reach a recommendation quickly, this instantly improves the insurer’s ability to satisfy their policyholders and reduce the claims processing time,” Ayer explains.

All that, however, would not be possible without data on past claims history, repair costs, transaction data, and other necessary data sets to extract clear value from generative AI analysis. “Be very clear about data sufficiency. Don’t jump into a program where eventually you realize you don’t have the necessary data,” Ayer says.

The benefits of third-party experience

Enterprises are increasingly aware that they must embrace generative AI, but knowing where to begin is another thing. “You start off wanting to make sure you don’t repeat mistakes other people have made,” says Ayer. An external provider can help organizations avoid those mistakes and leverage best practices and frameworks for testing and defining explainability and benchmarks for return on investment (ROI).

Using pre-built solutions by external partners can expedite time to market and increase a generative AI program’s value. These solutions can harness pre-built industry-specific generative AI platforms to accelerate deployment. “Generative AI programs can be extremely complicated,” Ayer points out. “There are a lot of infrastructure requirements, touch points with customers, and internal regulations. Organizations will also have to consider using pre-built solutions to accelerate speed to value. Third-party service providers bring the expertise of having an integrated approach to all these elements.”

Continue Reading

Copyright © 2021 Seminole Press.