Connect with us

Tech

America’s sequencing boom may be throwing money at the wrong problem

Published

on

America's sequencing boom may be throwing money at the wrong problem


Instead of trying to work through these issues at the national level, the sequencing contracts allow individual public health agencies to request the names and contact information of people who have tested positive for variants of concern. But that just pushes the same problems of data ownership down the chain.

“Some states are very good and want to know a lot about variants that are circulating in their state,” says Labcorp’s Brian Krueger. “The other states are not.” 

Public health epidemiologists often have little experience with bioinformatics, using software to analyze large datasets like genomic sequences. Only a few agencies have pre-existing sequencing programs; even if they did, having each jurisdiction to analyze just a small slice of the dataset undercuts how much knowledge can be gleaned about real-world behavior.

Getting around those issues—making it easier to connect sequences and clinical metadata on a large scale—would require more than just root and branch reform of privacy regulations, however. It would need a reorganization of the entire healthcare and public health systems in the US, where each of the 64 public health agencies operate as fiefdoms, and there is no centralization of information or power. 

“Metadata is the single biggest uncracked nut,” says Jonathan Quick, managing director of pandemic response, preparedness, and prevention at the Rockefeller Foundation. (The Rockefeller Foundation helps fund coverage at MIT Technology Review,, although it has no editorial oversight.) Because it’s so hard for public health to put together big enough datasets to really understand real-world variant behavior, our understanding has to come from vaccine manufacturers and hospitals adding sequencing to their own clinical trials, he says. 

It’s frustrating to him that so many huge datasets of useful information already exist in electronic medical records, immunization registries, and other sources, but can’t easily be used. 

“There’s a whole lot more that could be learned, and learned faster, without the shackles we put on the use of that data,” says Quick. “We can’t just rely on the vaccine companies to do surveillance.”

Boosting state-level bioinformatics

If public health labs are expected to focus more on tracking and understanding variants on their own, they’ll need all the help they can get. Doing something about variants case-by-case, after all, is a public health job, while doing something about variants on a policy level is a political one. 

Public health labs generally use genomics to expose otherwise-hidden information about outbreaks, or as part of track and trace efforts. In the past, sequencing has been used to connect E. coli outbreaks to specific farms, identify and interrupt chains of HIV transmission, isolate US Ebola cases, and follow annual flu patterns. 

Even those with well-established programs tend to use genomics sparingly. The cost of sequencing has dropped precipitously over the last decade, but the process is still not cheap, particularly for cash-strapped state and local health departments. The machines themselves cost hundreds of thousands of dollars to buy, and more to run: Illumina, one of the biggest makers of sequencing equipment, says labs spend an average of $1.2 million annually on supplies for each of its machines. 

“We’ll miss a ton of opportunities if we just give health departments money to set up programs without having a federal strategy so that everyone knows what they’re doing”

Health agencies don’t just need money; they also need expertise. Surveillance requires highly trained bioinformaticians to turn a sequence’s long strings of letters into useful information, as well as people to explain the results to officials, and convince them to turn any lessons learned into policy. 

Fortunately, the OAMD has been working to support state and local health departments as they try to understand their sequencing data, employing regional bioinformaticians to consult with public health officers and facilitating agencies’ efforts to share their experiences.

It is also pouring hundreds of millions into building and supporting those agencies’ own sequencing programs—not just for covid, but for all pathogens.

But many of those agencies are facing pressure to sequence as many covid genomes as possible. Without a cohesive strategy for collecting and analyzing data, it’s unclear how much utility those programs will have. 

“We’ll miss a ton of opportunities if we just give health departments money to set up programs without having a federal strategy so that everyone knows what they’re doing,” says Warmbrod.

Initial visions, usurped

Mark Pandori is director of the Nevada state public health laboratory, one of the programs OAMD supports. He has been a strong proponent of genomic surveillance for years. Before moving to Reno, he ran the public health lab in Alameda County, California, where he helped pioneer a program using sequencing to track how infections were being passed around hospitals. 

Turning sequences into usable data is the biggest challenge for public health genomics programs, he says.

“The CDC can say, ‘go buy a bunch of sequencing equipment, do a whole bunch of sequencing.’ But it doesn’t do anything unless the consumers of that data know how to use it, and know how to apply it,” he says. “I’m talking to you about the robotics we need to get things sequenced every day, but health departments just need a simple way to know if cases are related.”

When it comes to variants, public health labs are under many of the same pressures the CDC faces: everyone wants to know what variants are circulating, whether or not they can do anything with the information.

Pandori launched his covid sequencing program hoping to cut down on the labor needed to investigate potential covid outbreaks, quickly identifying whether cases caught near each other were related or coincidental. 

His lab was the first in North America to identify a patient reinfected with covid-19, and later found the B.1.351 variant in a hospitalized man who had just come back from South Africa. With rapid contact tracing, the health department was able to prevent it from spreading.

Tech

The hunter-gatherer groups at the heart of a microbiome gold rush

Published

on

The hunter-gatherer groups at the heart of a microbiome gold rush


The first step to finding out is to catalogue what microbes we might have lost. To get as close to ancient microbiomes as possible, microbiologists have begun studying multiple Indigenous groups. Two have received the most attention: the Yanomami of the Amazon rainforest and the Hadza, in northern Tanzania. 

Researchers have made some startling discoveries already. A study by Sonnenburg and his colleagues, published in July, found that the gut microbiomes of the Hadza appear to include bugs that aren’t seen elsewhere—around 20% of the microbe genomes identified had not been recorded in a global catalogue of over 200,000 such genomes. The researchers found 8.4 million protein families in the guts of the 167 Hadza people they studied. Over half of them had not previously been identified in the human gut.

Plenty of other studies published in the last decade or so have helped build a picture of how the diets and lifestyles of hunter-gatherer societies influence the microbiome, and scientists have speculated on what this means for those living in more industrialized societies. But these revelations have come at a price.

A changing way of life

The Hadza people hunt wild animals and forage for fruit and honey. “We still live the ancient way of life, with arrows and old knives,” says Mangola, who works with the Olanakwe Community Fund to support education and economic projects for the Hadza. Hunters seek out food in the bush, which might include baboons, vervet monkeys, guinea fowl, kudu, porcupines, or dik-dik. Gatherers collect fruits, vegetables, and honey.

Mangola, who has met with multiple scientists over the years and participated in many research projects, has witnessed firsthand the impact of such research on his community. Much of it has been positive. But not all researchers act thoughtfully and ethically, he says, and some have exploited or harmed the community.

One enduring problem, says Mangola, is that scientists have tended to come and study the Hadza without properly explaining their research or their results. They arrive from Europe or the US, accompanied by guides, and collect feces, blood, hair, and other biological samples. Often, the people giving up these samples don’t know what they will be used for, says Mangola. Scientists get their results and publish them without returning to share them. “You tell the world [what you’ve discovered]—why can’t you come back to Tanzania to tell the Hadza?” asks Mangola. “It would bring meaning and excitement to the community,” he says.

Some scientists have talked about the Hadza as if they were living fossils, says Alyssa Crittenden, a nutritional anthropologist and biologist at the University of Nevada in Las Vegas, who has been studying and working with the Hadza for the last two decades.

The Hadza have been described as being “locked in time,” she adds, but characterizations like that don’t reflect reality. She has made many trips to Tanzania and seen for herself how life has changed. Tourists flock to the region. Roads have been built. Charities have helped the Hadza secure land rights. Mangola went abroad for his education: he has a law degree and a master’s from the Indigenous Peoples Law and Policy program at the University of Arizona.

Continue Reading

Tech

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan

Published

on

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan


Over the last couple of decades, scientists have come to realize just how important the microbes that crawl all over us are to our health. But some believe our microbiomes are in crisis—casualties of an increasingly sanitized way of life. Disturbances in the collections of microbes we host have been associated with a whole host of diseases, ranging from arthritis to Alzheimer’s.

Some might not be completely gone, though. Scientists believe many might still be hiding inside the intestines of people who don’t live in the polluted, processed environment that most of the rest of us share. They’ve been studying the feces of people like the Yanomami, an Indigenous group in the Amazon, who appear to still have some of the microbes that other people have lost. 

But there is a major catch: we don’t know whether those in hunter-gatherer societies really do have “healthier” microbiomes—and if they do, whether the benefits could be shared with others. At the same time, members of the communities being studied are concerned about the risk of what’s called biopiracy—taking natural resources from poorer countries for the benefit of wealthier ones. Read the full story.

—Jessica Hamzelou

Eric Schmidt has a 6-point plan for fighting election misinformation

—by Eric Schmidt, formerly the CEO of Google, and current cofounder of philanthropic initiative Schmidt Futures

The coming year will be one of seismic political shifts. Over 4 billion people will head to the polls in countries including the United States, Taiwan, India, and Indonesia, making 2024 the biggest election year in history.

Continue Reading

Tech

Navigating a shifting customer-engagement landscape with generative AI

Published

on

Navigating a shifting customer-engagement landscape with generative AI


A strategic imperative

Generative AI’s ability to harness customer data in a highly sophisticated manner means enterprises are accelerating plans to invest in and leverage the technology’s capabilities. In a study titled “The Future of Enterprise Data & AI,” Corinium Intelligence and WNS Triange surveyed 100 global C-suite leaders and decision-makers specializing in AI, analytics, and data. Seventy-six percent of the respondents said that their organizations are already using or planning to use generative AI.

According to McKinsey, while generative AI will affect most business functions, “four of them will likely account for 75% of the total annual value it can deliver.” Among these are marketing and sales and customer operations. Yet, despite the technology’s benefits, many leaders are unsure about the right approach to take and mindful of the risks associated with large investments.

Mapping out a generative AI pathway

One of the first challenges organizations need to overcome is senior leadership alignment. “You need the necessary strategy; you need the ability to have the necessary buy-in of people,” says Ayer. “You need to make sure that you’ve got the right use case and business case for each one of them.” In other words, a clearly defined roadmap and precise business objectives are as crucial as understanding whether a process is amenable to the use of generative AI.

The implementation of a generative AI strategy can take time. According to Ayer, business leaders should maintain a realistic perspective on the duration required for formulating a strategy, conduct necessary training across various teams and functions, and identify the areas of value addition. And for any generative AI deployment to work seamlessly, the right data ecosystems must be in place.

Ayer cites WNS Triange’s collaboration with an insurer to create a claims process by leveraging generative AI. Thanks to the new technology, the insurer can immediately assess the severity of a vehicle’s damage from an accident and make a claims recommendation based on the unstructured data provided by the client. “Because this can be immediately assessed by a surveyor and they can reach a recommendation quickly, this instantly improves the insurer’s ability to satisfy their policyholders and reduce the claims processing time,” Ayer explains.

All that, however, would not be possible without data on past claims history, repair costs, transaction data, and other necessary data sets to extract clear value from generative AI analysis. “Be very clear about data sufficiency. Don’t jump into a program where eventually you realize you don’t have the necessary data,” Ayer says.

The benefits of third-party experience

Enterprises are increasingly aware that they must embrace generative AI, but knowing where to begin is another thing. “You start off wanting to make sure you don’t repeat mistakes other people have made,” says Ayer. An external provider can help organizations avoid those mistakes and leverage best practices and frameworks for testing and defining explainability and benchmarks for return on investment (ROI).

Using pre-built solutions by external partners can expedite time to market and increase a generative AI program’s value. These solutions can harness pre-built industry-specific generative AI platforms to accelerate deployment. “Generative AI programs can be extremely complicated,” Ayer points out. “There are a lot of infrastructure requirements, touch points with customers, and internal regulations. Organizations will also have to consider using pre-built solutions to accelerate speed to value. Third-party service providers bring the expertise of having an integrated approach to all these elements.”

Continue Reading

Copyright © 2021 Seminole Press.