Connect with us

Tech

Brain stimulation can improve the memory of older people

Published

on

Brain stimulation can improve the memory of older people


By the end of the four days, those who’d had their brains stimulated improved their performance by around 50 to 65% and remembered around four to six extra words from the list of 20, on average, says Reinhart. “It’s very impressive,” says Roi Cohen Kadosh, a cognitive neuroscientist at the University of Surrey, who was not involved in the study.

“We can watch the memory improvements accumulate … with each passing day,” says Reinhart, who, along his colleagues, published the findings in the journal Nature Neuroscience on Monday.

The greatest improvements were among those who had the worst cognitive function at the start of the study. This suggests that the technique might one day be helpful for people with memory disorders such as Alzheimer’s disease or other dementias, says Reinhart.

When Reinhart’s team swapped the frequencies, targeting the front of the brain with low frequencies and the back of the brain with high ones, there was no improvement in either short- or long-term memory. This suggests that the type of stimulation must match the natural brain waves in order to work.

Reinhart and his colleagues only checked in on their volunteers a month after they did the experiment, and they don’t know if the improvements lasted beyond that point. And while the study found that the volunteers were better at remembering words from a list, Reinhart doesn’t know if their memories improved more generally, or if the stimulation improved their lives in any way.

“The effects are really specific, and not something that would benefit someone who would want to improve their memory [more generally],” says Cohen Kadosh. He points out that people who want to remember things for an exam, for example, don’t just want to remember the first and last things they read—they need to remember everything. “We need to see if there is really an effect … in everyday life functions,” he says. Bikson agrees this is a valid concern—some “brain training” games promise to boost a player’s cognition, but research suggests that in fact players only get better at playing the game, and don’t see wider benefits. Reinhart’s approach, though, is different, he points out. “If you are stimulating brain networks that are generally involved in some aspect of cognition … that gives credence to the [idea that the benefits] could generalize,” he says.

Tech

The Download: toxic chemicals, and Russia’s cyberwar tactics

Published

on

The Download: toxic chemicals, and Russia’s cyberwar tactics


What are chemical pollutants doing to our bodies? It’s a timely question given that last week, people in Philadelphia cleared grocery shelves of bottled water after a toxic leak from a chemical plant spilled into a tributary of the Delaware River, a source of drinking water for 14 million people. And it was only last month that a train carrying a suite of other hazardous materials derailed in East Palestine, Ohio, unleashing an unknown quantity of toxic chemicals.

There’s no doubt that we are polluting the planet. In order to find out how these pollutants might be affecting our own bodies, we need to work out how we are exposed to them. Which chemicals are we inhaling, eating, and digesting? And how much? The field of exposomics, which seeks to study our exposure to pollutants, among other factors, could help to give us some much-needed answers. Read the full story.

—Jessica Hamzelou

This story is from The Checkup, Jessica’s weekly biotech newsletter. Sign up to receive it in your inbox every Thursday.

Read more:

+ The toxic chemicals all around us. Meet Nicolette Bugher, a researcher working to expose the poisons lurking in our environment and discover what they mean for human health. Read the full story.

+ Building a better chemical factory—out of microbes. Professor Kristala Jones Prather is helping to turn microbes into efficient producers of desired chemicals. Read the full story.

+ Microplastics are messing with the microbiomes of seabirds. The next step is to work out what this might mean for their health—and ours. Read the full story.

Continue Reading

Tech

The Download: sleeping in VR, and promising clean energy projects

Published

on

The Download: sleeping in VR, and promising clean energy projects


People are gathering in virtual spaces to relax, and even sleep, with their headsets on. VR sleep rooms are becoming popular among people who suffer from insomnia or loneliness, offering cozy enclaves where strangers can safely find relaxation and company—most of the time.

Each VR sleep room is created to induce calm. Some imitate beaches and campsites with bonfires, while others re-create hotel rooms or cabins. Soundtracks vary from relaxing beats to nature sounds to absolute silence, while lighting can range from neon disco balls to pitch-black darkness. 

The opportunity to sleep in groups can be particularly appealing to isolated or lonely people who want to feel less alone, and safe enough to fall asleep. The trouble is, what if the experience doesn’t make you feel that way? Read the full story.

—Tanya Basu

Inside the conference where researchers are solving the clean-energy puzzle

There are plenty of tried-and-true solutions that can begin to address climate change right now: wind and solar power are being deployed at massive scales, electric vehicles are coming to the mainstream, and new technologies are helping companies make even fossil-fuel production less polluting. 

But as we knock out the easy climate wins, we’ll also need to get creative to tackle harder-to-solve sectors and reach net-zero emissions. 

Continue Reading

Tech

Inside the conference where researchers are solving the clean-energy puzzle

Published

on

Inside the conference where researchers are solving the clean-energy puzzle


The Advanced Research Projects Agency for Energy (ARPA-E) funds high-risk, high-reward energy research projects, and each year the agency hosts a summit where funding recipients and other researchers and companies in energy can gather to talk about what’s new in the field.

As I listened to presentations, met with researchers, and—especially—wandered around the showcase, I often had a vague feeling of whiplash. Standing at one booth trying to wrap my head around how we might measure carbon stored by plants, I would look over and see another group focused on making nuclear fusion a more practical way to power the world. 

There are plenty of tried-and-true solutions that can begin to address climate change right now: wind and solar power are being deployed at massive scales, electric vehicles are coming to the mainstream, and new technologies are helping companies make even fossil-fuel production less polluting. But as we knock out the easy wins, we’ll also need to get creative to tackle harder-to-solve sectors and reach net-zero emissions. Here are a few intriguing projects from the ARPA-E showcase that caught my eye.

Vaporized rocks

“I heard you have rocks here!” I exclaimed as I approached the Quaise Energy station. 

Quaise’s booth featured a screen flashing through some fast facts and demonstration videos. And sure enough, laid out on the table were two slabs of rock. They looked a bit worse for wear, each sporting a hole about the size of a quarter in the middle, singed around the edges. 

These rocks earned their scorch marks in service of a big goal: making geothermal power possible anywhere. Today, the high temperatures needed to generate electricity using heat from the Earth are only accessible close to the surface in certain places on the planet, like Iceland or the western US. 

Geothermal power could in theory be deployed anywhere, if we could drill deep enough. Getting there won’t be easy, though, and could require drilling 20 kilometers (12 miles) beneath the surface. That’s deeper than any oil and gas drilling done today. 

Rather than grinding through layers of granite with conventional drilling technology, Quaise plans to get through the more obstinate parts of the Earth’s crust by using high-powered millimeter waves to vaporize rock. (It’s sort of like lasers, but not quite.)

Continue Reading

Copyright © 2021 Seminole Press.