Connect with us


Building the dams that doomed a valley



Swift River map

As an MIT senior, Jerome “Jerre” Spurr had paid little attention to the articles in the Boston Globe about the new reservoir planned for Western Massachusetts. But in 1927, just a month before his graduation, he found himself in a face-to-face interview with Frank Winsor, the chief engineer of the massive construction project.

Winsor had personally visited MIT to recruit top engineering graduates to help build the new reservoir, which—at 18 miles long and up to six miles wide—would be the largest in the world devoted solely to drinking water. Spurr, who grew up in Dorchester, had completed a bachelor’s degree in civil engineering with a focus on soil sciences and had been mentored by the soil sciences pioneer Karl Terzaghi, but he hadn’t thought much about what he’d do next. Suddenly Winsor had chosen him to lead a contingent of other MIT graduates to the Swift River Valley, the site of the future reservoir, immediately after graduation.

Spurr and at least six other new MIT grads set out for Enfield, Massachusetts, the largest of four small towns on the floor of the valley, 65 miles west of Cambridge. They may have understood the significance of their arrival intellectually, but they didn’t grasp it viscerally: they would play a part in destroying everything in the valley. Every building would be razed, every grave dug up, every tree cut, every farm stripped to a moonlike subsoil—every organic item in that green basin removed so that metropolitan Boston would be provided with fresh, clean drinking water in perpetuity. The four towns of the Swift River Valley—Enfield, Dana, Greenwich, and Prescott—would be wiped off maps as if they had never existed, replaced by 412 billion gallons of water. In all, nearly 2,500 people from the four doomed towns and sections of those around them would be displaced. 

The locals were, understandably, angry and suspicious of these college men in their natty outfits and fast cars. Their own young men had left the valley in search of better work. 

Of course, the MIT engineers, who were soon joined by a cohort of Northeastern and Worcester Polytechnic graduates, were not the first interlopers to descend upon the Swift River Valley, nor were the residents of Enfield, Dana, Greenwich, and Prescott the first people forced to leave it. Native Americans who had once lived among its many lakes, ponds, and streams had called it Quabbin, meaning “the meeting of many waters” or “a well-watered place.” The name Quabbin Reservoir, officially adopted in 1932, was a nod to the countless generations who had first populated the valley.

The massive effort to construct the reservoir was made up of several overlapping engineering projects: digging the 24.6-mile-long Quabbin Aqueduct between the new reservoir and the Wachusett Reservoir northeast of Worcester (the second-longest tunnel in the world at the time); orchestrating the water’s flow to Boston through a massive 80-mile network of rock tunnels and concrete pipes; building the Winsor Dam, the Goodnough Dike, and the “baffle dam” in the center of the reservoir (to purify sediment-filled water from the Ware River by circulating it); digging the “diversion tunnel,” which rerouted the Swift River; disinterring more than 7,600 bodies from their graves and reinterring 6,601 of them in the new Quabbin Park Cemetery (others went elsewhere at families’ requests); constructing the Quabbin Administration Building; building the Daniel Shays Highway (Route 202) around the western edge of the reservoir; and reforesting the watershed, at Quabbin Park and throughout the vast Quabbin Reservation.

A map shows how the reservoir would change the Swift River Valley.


But first, there was much surveying to be done. Every piece of property in the valley, and every acre of woodland and water, had to be documented and in most cases photographed. The new college graduates were assigned to surveying teams and set off across the valley with their equipment, often using axes to hack their way through brush. Spurr worked at first as a “rodman” and then as an “instrument man,” the top-ranking assistant on a surveying team, helping the foreman complete surveys and blueprints.

Spurr enjoyed the difficult outdoor work, but he was saddened by the townspeople’s initial antipathy. In Enfield, where most of the engineers lived, many refused to take in the young men as boarders even though they desperately needed the income. After bouncing between several homes, including one where the engineers and the landlords sat down to dinner together every night, Spurr decided he’d prefer to live alone and rented a farmhouse from the Metropolitan District Water Supply Commission, which had recently purchased it from one of many valley residents leaving for towns just outside the proposed watershed. During the day, Spurr and the other engineers worked out of the Chandler House, an elaborate white Victorian mansion the size of a small hotel. And knowing he’d be in the valley for at least eight more years, he began renovating the farmhouse in his off hours.

Spurr was soon promoted from instrument man to deed analyst. The commission’s head of the Enfield office, N. LeRoy Hammond, was impressed with his “analytical mind” and promoted him again, making him the head of the Enfield Soil Division, with a staff of five working under him.

As construction of the Winsor Dam ramped up, the engineers had to test the local soil daily. The massive hydraulic fill dam was built atop a row of sunken concrete caissons attached to bedrock, and its approximately 40-foot-wide core was constructed from repurposed earth and rocks from the valley. Swift River water was piped to the top of the construction site, and after the water ran down the core, the fill was expected to solidify into a material completely impervious to the millions of gallons of water beating against it.  

The engineers at the dam had built an artificial lake at its western base, complete with pontoon boats, to monitor the construction. With each new layer of fill, Spurr said in a 1987 interview, there was the potential for “spits” of sand from the “beach”—the strip of land between the artificial lake and the dam—to penetrate the core, making it permeable. And if bits of the core material extended into the beach, they could create planes of weakness that might eventually slide. The fill had no stability in itself: according to Spurr, it had the consistency of molasses. Each day, he and his soil “sample party” tested the dam’s core and the soil on its beach, collecting 15-pound bags and driving them back to the lab next to the Chandler House to analyze their density and composition. 

They also analyzed samples from the core itself. Spurr had helped Terzaghi develop what he described as “a core sampling device that consisted of a tube, and in the tube was a piston, and the piston was connected through a smaller tube and a rod to the end of the extension, and the sampler could be pushed down into the core to the desired depth of the pool.” The piston would automatically suck up the sample in the core section. Then the sample party filled pint jars with the tubes’ contents, marking them with the location and depth. As the dam grew, contractors built “observation wells” so Spurr’s team could climb down and take samples from inside the dam. Fast-paced analysis under high-stakes conditions was “challenging work,” Spurr said, “because it was new and we developed [the technology and procedures] ourselves.” Terzaghi, the founder of modern soil mechanics, had invented the tools; Spurr was deploying them for the first time, flagging problems with the samples so the head dam engineer could take corrective actions to ensure that the structure would be solid enough to contain the water. 

“It was necessary to keep as current a testing operation as possible,” Spurr said. A pervious dam, he added, would be like millions of gallons of molasses—a frightening image for someone who would have remembered the Great Molasses Flood of 1919, a Boston disaster that killed 21 people.

The economy compounded the project’s devastating impact on the valley’s inhabitants. Most sold their properties to the commission at Depression prices, leaving them with little to show for what often amounted to generations of work. No longer able to farm, many had to take whatever jobs they could get—often with the very commission that was forcing them out of their homes.   

Spurr (second row, left) helped lead the Grand March at the farewell ball in 1938.


Although work consumed most of Spurr’s days, including Saturdays, he felt a responsibility to give back to the people whose lives and livelihoods he was irrevocably altering. So he tried to make himself useful in the community. He taught Sunday school. He started a Boy Scout troop. He met his wife, Anna Chase, a Vermont native who had come to Enfield to teach, when she sang in the church choir. Anna herself became the last president of the local women’s social society, the Quabbin Club, and, according to Spurr, played piano for free at the funerals of those who could otherwise not afford music. He joined the Enfield Masons, serving as the chapter’s “Worshipful Master” and then its treasurer; as of the mid-1930s, the group’s roster included as many engineers as locals. By then, Spurr and many other engineers had become part of the community. They formed jazz bands, played on baseball teams, gave out school awards, and married local girls. As Christmas approached in 1934, a year when few families could afford decorations, several of them pitched in to buy electric Christmas lights and strung them on a large tree they erected in the cellar hole of a torn-down commercial building. They also convinced the electric company to turn the site’s power back on until after New Year’s Day. It became the town tree and could be seen from all over the valley.

Nearly 11 years after Spurr’s arrival in Enfield, the dam construction was entering its final phase. Despite meddling and graft at the highest levels of state government, the Quabbin project would be completed ahead of schedule and under budget. With the four towns of the Swift River Valley set to be disincorporated at midnight on April 28, 1938, the Enfield Volunteer Fire Department sponsored a farewell ball. On the night of April 27, thousands of guests in formalwear or black mourning, flanked by journalists with flash cameras and notepads, arrived at the Enfield Town Hall, an old brick building designed to hold a maximum of 300 people. As befit his place in the community, Spurr was near the head of the line for the ball’s Grand March, and he presumably shed tears along with everyone else when the clock struck midnight and the band played “Auld Lang Syne.”

The Swift River Valley was slated for flooding in 1939; by mid-1938 the area was stripped of growing things and empty of stores, schools, and churches. Spurr had hoped to purchase his antique Enfield home from the commission and move it to another location before the waters rose, but a hurricane in September 1938 knocked out his telephone, electricity, and plumbing, none of which would be reinstated. So he and his wife and their young son moved to Wellesley, and he began working on the next stage of the Quabbin project: pressure tunnels carrying water from the Wachusett Reservoir to the Norumbega Reservoir in Weston. He was the last engineer to leave the valley. 

With World War II looming, Spurr left the commission in early 1941 to become an assistant professor of military science and tactics at MIT and head of the MIT ROTC Engineering Unit; in his spare time, he lectured on the Quabbin Reservoir, using the movies he and other engineers had shot on rare and expensive Technicolor film during construction. He went on to serve in Austria and Poland in the Army Corps of Engineers, fought in the Korean War, and later attempted to launch a Boy Scout organization in Turkey while supporting US military missions there. After retiring from the military in 1958, he occasionally lectured on Quabbin construction history and taught a class in soil sciences at Wentworth. When the farewell ball was re-created in Amherst in 1988 to mark the 50th anniversary of the death of the Swift River Valley, Spurr, 83, once again stood at the head of the Grand March. 

At a lecture in the 1980s, a former valley native who had become an engineer after being mentored by Spurr introduced him as “a pioneer … one of the six or eight people in the world that were in on the ground floor [of modern soil engineering].” Spurr walked onto the auditorium stage to applause. “I will simply introduce my remarks by saying that all you have listened to is very much inflated,” he said in his Boston gentleman’s accent. “I am very thankful for the kind comments that have been made, and I don’t know if I can live up to them or not, but I will try.” 

And then the old MIT engineer launched into a technically complex 90-minute lecture on engineering work that he had finished half a century earlier and still knew by heart.

Elisabeth C. Rosenberg is the author of Before the Flood: Destruction, Community, and Survival in the Drowned Towns of the Quabbin, due out from Pegasus Books in August.


The quest to show that biological sex matters in the immune system



Sabra Klein and Janna Shapiro look at a specimen on a lightbox.

She ultimately found a postdoctoral position in the lab of one of her thesis committee members. And in the years since, as she has established a lab of her own at the university’s Bloomberg School of Public Health, she has painstakingly made the case that sex—defined by biological attributes such as our sex chromosomes, sex hormones, and reproductive tissues—really does influence immune responses. 

Through research in animal models and humans, Klein and others have shown how and why male and female immune systems respond differently to the flu virus, HIV, and certain cancer therapies, and why most women receive greater protection from vaccines but are also more likely to get severe asthma and autoimmune disorders (something that had been known but not attributed specifically to immune differences). “Work from her laboratory has been instrumental in advancing our understanding of vaccine responses and immune function on males and females,” says immunologist Dawn Newcomb of the Vanderbilt University Medical Center in Nashville, Tennessee. (When referring to people in this article, “male” is used as a shorthand for people with XY chromosomes, a penis, and testicles, and who go through a testosterone-dominated puberty, and “female” is used as a shorthand for people with XX chromosomes and a vulva, and who go through an estrogen-dominated puberty.)

Through her research, as well as the unglamorous labor of arranging symposia and meetings, Klein has helped spearhead a shift in immunology, a field that long thought sex differences didn’t matter. Historically, most trials enrolled only males, resulting in uncounted—and likely uncountable—consequences for public health and medicine. The practice has, for example, caused women to be denied a potentially lifesaving HIV therapy and left them likely to endure worse side effects from drugs and vaccines when given the same dose as men.

Men and women don’t experience infectious or autoimmune diseases in the same way. Women are nine times more likely to get lupus than men, and they have been hospitalized at higher rates for some flu strains. Meanwhile, men are significantly more likely to get tuberculosis and to die of covid-19 than women. 

In the 1990s, scientists often attributed such differences to gender rather than sex—to norms, roles, relationships, behaviors, and other sociocultural factors as opposed to biological differences in the immune system.

For example, even though three times as many women have multiple sclerosis as men, immunologists in the 1990s ignored the idea that this difference could have a biological basis, says Rhonda Voskuhl, a neuroimmunologist at the University of California, Los Angeles. “People would say, ‘Oh, the women just complain more—they’re kind of hysterical,’” Voskuhl says. “You had to convince people that it wasn’t just all subjective or environmental, that it was basic biology. So it was an uphill battle.” 

Sabra Klein (left) and Janna Shapiro in Klein’s laboratory at Johns Hopkins University in Baltimore, Maryland.


Despite a historical practice of “bikini medicine”—the notion that there are no major differences between the sexes outside the parts that fit under a bikini—we now know that whether you’re looking at your metabolism, heart, or immune system, both biological sex differences and sociocultural gender differences exist. And they both play a role in susceptibility to diseases. For instance, men’s greater propensity to tuberculosis—they are almost twice as likely to get it as women—may be attributed partly to differences in their immune responses and partly to the fact that men are more likely to smoke and to work in mining or construction jobs that expose them to toxic substances, which can impair the lungs’ immune defenses. 

How to tease apart the effects of sex and gender? That’s where animal models come in. “Gender is a social construct that we associate with humans, so animals do not have a gender,” says Chyren Hunter, associate director for basic and translational research at the US National Institutes of Health Office of Research on Women’s Health. Seeing the same effect in both animal models and humans is a good starting point for finding out whether an immune response is modulated by sex. 

Continue Reading


Why can’t tech fix its gender problem?



From left to right: Gordon MOORE, C. Sheldon ROBERTS, Eugene KLEINER, Robert NOYCE, Victor GRINICH, Julius BLANK, Jean HOERNI and Jay LAST.

Not competing in this Olympics, but still contributing to the industry’s success, were the thousands of women who worked in the Valley’s microchip fabrication plants and other manufacturing facilities from the 1960s to the early 1980s. Some were working-class Asian- and Mexican-Americans whose mothers and grandmothers had worked in the orchards and fruit can­neries of the prewar Valley. Others were recent migrants from the East and Midwest, white and often college educated, needing income and interested in technical work. 

With few other technical jobs available to them in the Valley, women would work for less. The preponderance of women on the lines helped keep the region’s factory wages among the lowest in the country. Women continue to dominate high-tech assembly lines, though now most of the factories are located thousands of miles away. In 1970, one early American-owned Mexican production line employed 600 workers, nearly 90% of whom were female. Half a century later the pattern continued: in 2019, women made up 90% of the workforce in one enormous iPhone assembly plant in India. Female production workers make up 80% of the entire tech workforce of Vietnam. 

Venture: “The Boys Club”

Chipmaking’s fiercely competitive and unusually demanding managerial culture proved to be highly influential, filtering down through the millionaires of the first semiconductor generation as they deployed their wealth and managerial experience in other companies. But venture capital was where semiconductor culture cast its longest shadow. 

The Valley’s original venture capitalists were a tight-knit bunch, mostly young men managing older, much richer men’s money. At first there were so few of them that they’d book a table at a San Francisco restaurant, summoning founders to pitch everyone at once. So many opportunities were flowing it didn’t much matter if a deal went to someone else. Charter members like Silicon Valley venture capitalist Reid Dennis called it “The Group.” Other observers, like journalist John W. Wilson, called it “The Boys Club.”

The men who left the Valley’s first silicon chipmaker, Shockley Semiconductor, to start Fairchild Semiconductor in 1957 were called “the Traitorous Eight.”


The venture business was expanding by the early 1970s, even though down markets made it a terrible time to raise money. But the firms founded and led by semiconductor veterans during this period became industry-defining ones. Gene Kleiner left Fairchild Semiconductor to cofound Kleiner Perkins, whose long list of hits included Genentech, Sun Microsystems, AOL, Google, and Amazon. Master intimidator Don Valentine founded Sequoia Capital, making early-stage investments in Atari and Apple, and later in Cisco, Google, Instagram, Airbnb, and many others.

Generations: “Pattern recognition”

Silicon Valley venture capitalists left their mark not only by choosing whom to invest in, but by advising and shaping the business sensibility of those they funded. They were more than bankers. They were mentors, professors, and father figures to young, inexperienced men who often knew a lot about technology and nothing about how to start and grow a business. 

“This model of one generation succeeding and then turning around to offer the next generation of entrepreneurs financial support and managerial expertise,” Silicon Valley historian Leslie Berlin writes, “is one of the most important and under-recognized secrets to Silicon Valley’s ongoing success.” Tech leaders agree with Berlin’s assessment. Apple cofounder Steve Jobs—who learned most of what he knew about business from the men of the semiconductor industry—likened it to passing a baton in a relay race.

Continue Reading


Predicting the climate bill’s effects is harder than you might think



Predicting the climate bill’s effects is harder than you might think

Human decision-making can also cause models and reality to misalign. “People don’t necessarily always do what is, on paper, the most economic,” says Robbie Orvis, who leads the energy policy solutions program at Energy Innovation.

This is a common issue for consumer tax credits, like those for electric vehicles or home energy efficiency upgrades. Often people don’t have the information or funds needed to take advantage of tax credits.

Likewise, there are no assurances that credits in the power sectors will have the impact that modelers expect. Finding sites for new power projects and getting permits for them can be challenging, potentially derailing progress. Some of this friction is factored into the models, Orvis says. But there’s still potential for more challenges than modelers expect.

Not enough

Putting too much stock in results from models can be problematic, says James Bushnell, an economist at the University of California, Davis. For one thing, models could overestimate how much behavior change is because of tax credits. Some of the projects that are claiming tax credits would probably have been built anyway, Bushnell says, especially solar and wind installations, which are already becoming more widespread and cheaper to build.

Still, whether or not the bill meets the expectations of the modelers, it’s a step forward in providing climate-friendly incentives, since it replaces solar- and wind-specific credits with broader clean-energy credits that will be more flexible for developers in choosing which technologies to deploy.

Another positive of the legislation is all its long-term investments, whose potential impacts aren’t fully captured in the economic models. The bill includes money for research and development of new technologies like direct air capture and clean hydrogen, which are still unproven but could have major impacts on emissions in the coming decades if they prove to be efficient and practical. 

Whatever the effectiveness of the Inflation Reduction Act, however, it’s clear that more climate action is still needed to meet emissions goals in 2030 and beyond. Indeed, even if the predictions of the modelers are correct, the bill is still not sufficient for the US to meet its stated goals under the Paris agreement of cutting emissions to half of 2005 levels by 2030.

The path ahead for US climate action isn’t as certain as some might wish it were. But with the Inflation Reduction Act, the country has taken a big step. Exactly how big is still an open question. 

Continue Reading

Copyright © 2021 Seminole Press.