Data is emerging on the impact of digital technologies on greenhouse gas (GHG) emissions, and their importance is clear. The World Economic Forum (WEF) and Accenture say digital technologies can help the energy, materials, and mobility industries reduce emissions by 4% to 10% by 2030.1 PwC calculates that AI alone can reduce global GHG emissions by 4% by 2030,2 while Capgemini reports that the climate potential of AI puts the figure at 16% across multiple sectors.3
Despite these technologies’ proven impacts, however, organizations have insufficient urgency around their adoption to accelerate decarbonization and emissions reduction goals. Across industry, many leaders leverage partners to support digital transformation, while energy transition remains a secondary objective. Digital and sustainability leaders are taking a surprisingly conservative approach to technology that fails to address current problems. As justification, they cite immaturity of existing solutions, a need for further study or customization, and challenges ranging from intermittent renewable energy supplies to lack of trust in existing carbon trading schemes.
MIT Technology Review Insights conducted a global survey to examine industry leaders’ use of, plans for, and preparedness to adopt digital technologies to reach decarbonization targets. The survey addressed 350 C-level leaders at large global companies in eight major sectors, to gather their perceptions about these solutions. Insights were also gathered from in-depth discussions with nine subject matter experts.
The following are the key research findings:
Digitalization is the backbone that will support energy transition. Despite differences across industries (and across regions), digital technologies are considered important (rated from 1 to 10, where 10 is most important) for optimizing efficiency and reducing energy and waste (scoring 6.8 overall); designing and optimizing carbon sequestration technologies (6.7); making sustainability data accessible, verifiable, and transparent (6.2); monitoring GHG sinks (6.6); and designing and optimizing low carbon footprint energy systems (5.8).
For most industries, the main decarbonization lever is a circular economy. A majority (54%) of participants from all industries (except for petrochemical manufacturing) cite a circular economy4 as their dominant environmental sustainability goal. A circular economy minimizes waste with reduced consumption, increased efficiency, and resource and energy recapture. The second most highly rated sustainability goal is to improve access to clean energy (41%), and third, to improve energy efficiency (40%).
Partnership with technology experts is how industry innovates with digital solutions. The most cited approach to adopting new digital technology is through vendor partnerships (31%). Executives are less likely, however, to emphasize the importance of open standards and data sharing across the supply chain to accelerate digital technology deployment (especially in energy, metals and mining, construction, and petrochemical manufacturing), with only 16% identifying it as the top enabler. Yet, experts say an embrace of open standards and data sharing—essential to AI and ML’s ability to conquer complexity—to streamline the supply chain is “inevitable” to meeting decarbonization goals.
Attitudes toward tech adoption and innovation vary by sector and region. Although cybersecurity is considered the biggest external obstacle to digital transformation overall (58%), construction companies are much more apprehensive (76%), while metals and mining companies are less concerned (47%). Overall, 11% of respondents aim to experiment with digital technology early on, but some sectors are less enthused: only 4% in metals and mining, 5% in petrochemical manufacturing, and 6% in industrial manufacturing. Buy-in and a willingness to learn is essential for cooperation across departments and organizations.
The Frost nails its uncanny, disconcerting vibe in its first few shots. Vast icy mountains, a makeshift camp of military-style tents, a group of people huddled around a fire, barking dogs. It’s familiar stuff, yet weird enough to plant a growing seed of dread. There’s something wrong here.
Welcome to the unsettling world of AI moviemaking. The Frost is a 12-minute movie from Detroit-based video creation company Waymark in which every shot is generated by an image-making AI. It’s one of the most impressive—and bizarre—examples yet of this strange new genre. Read the full story, and take an exclusive look at the movie.
—Will Douglas Heaven
Microplastics are everywhere. What does that mean for our immune systems?
Microplastics are pretty much everywhere you look. These tiny pieces of plastic pollution, less than five millimeters across, have been found in human blood, breast milk, and placentas. They’re even in our drinking water and the air we breathe.
Given their ubiquity, it’s worth considering what we know about microplastics. What are they doing to us?
The short answer is: we don’t really know. But scientists have begun to build a picture of their potential effects from early studies in animals and clumps of cells, and new research suggests that they could affect not only the health of our body tissues, but our immune systems more generally. Read the full story.
Here, bits of plastic can end up collecting various types of bacteria, which cling to their surfaces. Seabirds that ingest them not only end up with a stomach full of plastic—which can end up starving them—but also get introduced to types of bacteria that they wouldn’t encounter otherwise. It seems to disturb their gut microbiomes.
There are similar concerns for humans. These tiny bits of plastic, floating and flying all over the world, could act as a “Trojan horse,” introducing harmful drug-resistant bacteria and their genes, as some researchers put it.
It’s a deeply unsettling thought. As research plows on, hopefully we’ll learn not only what microplastics are doing to us, but how we might tackle the problem.
Read more from Tech Review’s archive
It is too simplistic to say we should ban all plastic. But we could do with revolutionizing the way we recycle it, as my colleague Casey Crownhart pointed out in an article published last year.
We can use sewage to track the rise of antimicrobial-resistant bacteria, as I wrote in a previous edition of the Checkup. At this point, we need all the help we can get …
… which is partly why scientists are also exploring the possibility of using tiny viruses to treat drug-resistant bacterial infections. Phages were discovered around 100 years ago and are due a comeback!
Our immune systems are incredibly complicated. And sex matters: there are important differences between the immune systems of men and women, as Sandeep Ravindran wrote in this feature, which ran in our magazine issue on gender.
Artists are often the first to experiment with new technology. But the immediate future of generative video is being shaped by the advertising industry.Waymark made The Frost to explore how generative AI could be built into its products. The company makes video creation tools for businesses looking for a fast and cheap way to make commercials. Waymark is one of several startups, alongside firms such as Softcube and Vedia AI, that offer bespoke video ads for clients with just a few clicks.
Waymark’s current tech, launched at the start of the year, pulls together several different AI techniques, including large language models, image recognition, and speech synthesis, to generate a video ad on the fly. Waymark also drew on its large data set of non-AI-generated commercials created for previous customers. “We have hundreds of thousands of videos,” says CEO Alex Persky-Stern. “We’ve pulled the best of those and trained it on what a good video looks like.”
To use Waymark’s tool, which it offers as part of a tiered subscription service starting at $25 a month, users supply the web address or social media accounts for their business, and it goes off and gathers all the text and images it can find. It then uses that data to generate a commercial, using OpenAI’s GPT-3 to write a script that is read aloud by a synthesized voice over selected images that highlight the business. A slick minute-long commercial can be generated in seconds. Users can edit the result if they wish, tweaking the script, editing images, choosing a different voice, and so on. Waymark says that more than 100,000 people have used its tool so far.
The trouble is that not every business has a website or images to draw from, says Parker. “An accountant or a therapist might have no assets at all,” he says.
Waymark’s next idea is to use generative AI to create images and video for businesses that don’t yet have any—or don’t want to use the ones they have. “That’s the thrust behind making The Frost,” says Parker. “Create a world, a vibe.”
The Frost has a vibe, for sure. But it is also janky. “It’s not a perfect medium yet by any means,” says Rubin. “It was a bit of a struggle to get certain things from DALL-E, like emotional responses in faces. But at other times, it delighted us. We’d be like, ‘Oh my God, this is magic happening before our eyes.’”
This hit-and-miss process will improve as the technology gets better. DALL-E 2, which Waymark used to make The Frost, was released just a year ago. Video generation tools that generate short clips have only been around for a few months.
The most revolutionary aspect of the technology is being able to generate new shots whenever you want them, says Rubin: “With 15 minutes of trial and error, you get that shot you wanted that fits perfectly into a sequence.” He remembers cutting the film together and needing particular shots, like a close-up of a boot on a mountainside. With DALL-E, he could just call it up. “It’s mind-blowing,” he says. “That’s when it started to be a real eye-opening experience as a filmmaker.”