Connect with us

Tech

Dissecting the CRISPR-baby stories

Published

on

Dissecting the CRISPR-baby stories


After the 2017 meeting, He started reading biographies of scientific risk-takers who were ultimately hailed as heroes, from Edward Jenner, creator of the first vaccine, to Robert Edwards, pioneer of in vitro fertilization (IVF). In January 2019, he wrote to government investigators: “I firmly believe that what I am doing is to promote the progress of human civilization. History will stand on my side.”

Looking back at my notes from the 2017 meeting, I discovered that He had remembered only the first half of that provocative statement. It continued: “What’s going on right now is cowboy science … but that doesn’t mean that’s the best way to proceed … we should take a lesson from our history and do better the next time around.”

Learning from history?

Kevin Davies’s Editing Humanity follows a circuitous path through the remarkably diverse experiments and laboratories where the CRISPR puzzle was pieced together. The story of discovery is gripping, not least because Davies, a geneticist turned editor and writer, skillfully weaves together a wealth of detail in a page-turning narrative. The book gives a textured picture of the intersection of academic science with the business of biotechnology, exploring the enormous competition, conflict, and capital that have surrounded CRISPR’s commercialization. 

However, Davies’s book is heavy on the business of gene editing, light on the humanity. The narrative emphasizes the arenas of scientific discovery and technological innovation as though they alone are where the future is made.  

Humanity first appears as something more than an object of gene editing in the last line of the book: “CRISPR is moving faster than society can keep up. To where is up to all of us.” Yet most of us are missing from the story. Admittedly, the book’s focus is the gene editors and their tools. But for readers already primed to see science as the driver of progress, and society as recalcitrant and retrograde until it eventually “catches up,” this telling reinforces that consequential myth. 

Walter Isaacson’s The Code Breaker cleaves even more closely to scientific laboratories, following the personalities behind the making of CRISPR. The main protagonist of his sprawling book is Doudna, but it also profiles the many other figures, from graduate students to Nobel laureates, whose work intersected with hers. In always admiring and sometimes loving detail, Isaacson narrates the excitement of discovery, the heat of competition, and the rise of scientific celebrity—and, in He’s case, infamy. It is a fascinating story of rivalry and even pettiness, albeit with huge stakes in the form of prizes, patents, profits, and prestige. 

Yet for all its detail, the book tells a narrow story. It is a conventional celebration of discovery and invention that sometimes slides into rather breathless celebrity profile (and gossip). Apart from some chapters of Isaacson’s own rather superficial ruminations on “ethics,” his storytelling rehearses clichés more than it invites reflection and learning. Even the portraits of the people feel distorted by his flattering lens. 

The one exception is He, who gets a few chapters as an unwelcome interloper. Isaacson makes little effort to understand his origins and motivations. He is a nobody with a “smooth personality and a thirst for fame” who attempts to force his way into an elite club where he has no business being. Disaster ensues.

He’s story ends with a “fair trial” and a prison sentence. Here Isaacson parrots a state media report, unwittingly playing propagandist. The official Chinese story was crafted to conclude the He affair and align Chinese science with the responsible rather than the rogue.

Authorizing narratives

These stories of heroic science take for granted what makes a hero—and a villain. Davies’s account is considerably more careful and nuanced, but it too shifts to casting stones before seeking to understand the sources of failure—where He’s project came from, how a person trained at elite American universities could have believed he would be valorized, not condemned, and how he could get so far without realizing how deep a hole he had dug for himself. 

editing humanity

My overwhelming sense from my interviews with He is that far from “going rogue,” he was trying to win a race. His failure lay not in refusing to listen to his scientific elders, but in listening too intently, accepting their encouragement and absorbing things said in the inner spaces of science about where genome editing (and humanity) are headed. Things like: CRISPR will save humanity from the burden of disease and infirmity. Scientific progress will prevail as it has always done when creative and courageous pioneers push boundaries. Genome editing of the germline—embryos, eggs, or sperm that will pass changes down to future generations—is inevitable; the only question is who, when, and where. 

He heard—and believed in—the messianic promise of the power to edit. As Davies writes, “If fixing a single letter in the genetic code of a fellow human being isn’t the coveted chalice of salvation, I don’t know what is.” 

Indeed, as even Isaacson notes, the National Academies had sent similar signals, leaving the door open to germline engineering for “serious diseases or conditions.” He Jiankui was roundly criticized for making an edit that was “medically unnecessary”—a genetic change he hoped would make babies genetically resistant to HIV. There are, the critics argued, easier and safer ways to avoid transmitting the virus. But he believed that the terrible stigma in China against HIV-positive people made it a justified target. And the Academies left room for that call: “It is important to note that such concepts as ‘reasonable alternatives’ and ‘serious disease or condition’ … are necessarily vague. Different societies will interpret these concepts in the context of their diverse historical, cultural, and social characteristics.”

Science-centric storytelling implies that  Science sits outside of society, that it deals primarily with pure arenas of nature and knowledge. But that is a false narrative.  

He understood this as an authorization. These are the true origins of his grotesque experiment. The picture of He, and the scientific community he was embedded in, is a rather more ambiguous one than the virtuous science of Isaacson’s telling. Or, rather, it’s a more human one, in which knowledge and technical acumen aren’t necessarily accompanied by wisdom and may instead be colored by ambition, greed, and myopia. Isaacson does the scientists a disservice by presenting them as the makers of the future rather than as people confronting the awesome power of the tools they have created, attempting (and, often, failing) to temper promises of progress with the humility to recognize that they are out of their depth. 

Another cost of science-centric storytelling is the way it implies that science sits outside of society, that it deals primarily with the pure arenas of nature and knowledge. But that is a false narrative. For instance, the commercial business of IVF is a crucial part of the story, and yet it receives remarkably little attention in Davies’s and Isaacson’s accounts. In this regard, their books reflect a deficit in the genome-­editing debates. Scientific authorities have tended to proceed as though the world is as governable as a laboratory bench, and as if anyone who thinks rationally thinks like them. 

Humanity’s stories 

These science-centric stories sideline the people in whose name the research is done. Eben Kirksey’s The Mutant Project brings those people into the picture. His book, too, is a tour of the actors at the frontiers of genome editing, but for him those actors also include patients, activists, artists, and scholars who engage with disability and disease as lived experiences and not merely as DNA molecules. In Kirksey’s book, issues of justice are entangled with the way stories are told about how bodies should be—and not be. This wrests questions of progress from the grip of science and technology. 

Like Davies, Kirksey uses the He affair to frame his story. A skilled anthropologist, he is at his best when drawing out people’s own stories about what is at stake for them. Some of the most remarkable interviews in the book are with the patients from He Jiankui’s trial, including an HIV-positive medical professional who became more deeply committed to He’s project after he was fired from his job because his HIV status was discovered. 

Kirksey’s attention to human beings as more than engineerable bodies, and to the desires that drive the imperative to edit, invites us to recognize the extraordinary peril of reaching into the gene-editing tool kit for salvation. 

That peril is too often obscured by hastily spun stories of progress. On the final morning of the genome-editing summit in Hong Kong, less than 24 hours after He had presented his CRISPR-babies experiment, the conference organizing committee issued a statement simultaneously rebuking him and laying a pathway for those who would follow in his footsteps. Behind the statement was a story: one in which technology is racing ahead, and society needs to just accept it—and affirm it. A member of that committee told Kirksey why they had rushed to judgment: “The first person who puts it on paper wins.”

So far, the CRISPR story has been about racing to be the first to write—not just scientific papers, but the nucleotides of the genome and rules for the human future. The rush to write—and win—the future leaves little room for learning from patterns of the past. Stories of technological futures, thrilling though they may be, substitute a thin narrative of progress for the richness and fragility of the human story. 

We need to listen to more and better storytellers. Our common future depends upon it.

Tech

The hunter-gatherer groups at the heart of a microbiome gold rush

Published

on

The hunter-gatherer groups at the heart of a microbiome gold rush


The first step to finding out is to catalogue what microbes we might have lost. To get as close to ancient microbiomes as possible, microbiologists have begun studying multiple Indigenous groups. Two have received the most attention: the Yanomami of the Amazon rainforest and the Hadza, in northern Tanzania. 

Researchers have made some startling discoveries already. A study by Sonnenburg and his colleagues, published in July, found that the gut microbiomes of the Hadza appear to include bugs that aren’t seen elsewhere—around 20% of the microbe genomes identified had not been recorded in a global catalogue of over 200,000 such genomes. The researchers found 8.4 million protein families in the guts of the 167 Hadza people they studied. Over half of them had not previously been identified in the human gut.

Plenty of other studies published in the last decade or so have helped build a picture of how the diets and lifestyles of hunter-gatherer societies influence the microbiome, and scientists have speculated on what this means for those living in more industrialized societies. But these revelations have come at a price.

A changing way of life

The Hadza people hunt wild animals and forage for fruit and honey. “We still live the ancient way of life, with arrows and old knives,” says Mangola, who works with the Olanakwe Community Fund to support education and economic projects for the Hadza. Hunters seek out food in the bush, which might include baboons, vervet monkeys, guinea fowl, kudu, porcupines, or dik-dik. Gatherers collect fruits, vegetables, and honey.

Mangola, who has met with multiple scientists over the years and participated in many research projects, has witnessed firsthand the impact of such research on his community. Much of it has been positive. But not all researchers act thoughtfully and ethically, he says, and some have exploited or harmed the community.

One enduring problem, says Mangola, is that scientists have tended to come and study the Hadza without properly explaining their research or their results. They arrive from Europe or the US, accompanied by guides, and collect feces, blood, hair, and other biological samples. Often, the people giving up these samples don’t know what they will be used for, says Mangola. Scientists get their results and publish them without returning to share them. “You tell the world [what you’ve discovered]—why can’t you come back to Tanzania to tell the Hadza?” asks Mangola. “It would bring meaning and excitement to the community,” he says.

Some scientists have talked about the Hadza as if they were living fossils, says Alyssa Crittenden, a nutritional anthropologist and biologist at the University of Nevada in Las Vegas, who has been studying and working with the Hadza for the last two decades.

The Hadza have been described as being “locked in time,” she adds, but characterizations like that don’t reflect reality. She has made many trips to Tanzania and seen for herself how life has changed. Tourists flock to the region. Roads have been built. Charities have helped the Hadza secure land rights. Mangola went abroad for his education: he has a law degree and a master’s from the Indigenous Peoples Law and Policy program at the University of Arizona.

Continue Reading

Tech

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan

Published

on

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan


Over the last couple of decades, scientists have come to realize just how important the microbes that crawl all over us are to our health. But some believe our microbiomes are in crisis—casualties of an increasingly sanitized way of life. Disturbances in the collections of microbes we host have been associated with a whole host of diseases, ranging from arthritis to Alzheimer’s.

Some might not be completely gone, though. Scientists believe many might still be hiding inside the intestines of people who don’t live in the polluted, processed environment that most of the rest of us share. They’ve been studying the feces of people like the Yanomami, an Indigenous group in the Amazon, who appear to still have some of the microbes that other people have lost. 

But there is a major catch: we don’t know whether those in hunter-gatherer societies really do have “healthier” microbiomes—and if they do, whether the benefits could be shared with others. At the same time, members of the communities being studied are concerned about the risk of what’s called biopiracy—taking natural resources from poorer countries for the benefit of wealthier ones. Read the full story.

—Jessica Hamzelou

Eric Schmidt has a 6-point plan for fighting election misinformation

—by Eric Schmidt, formerly the CEO of Google, and current cofounder of philanthropic initiative Schmidt Futures

The coming year will be one of seismic political shifts. Over 4 billion people will head to the polls in countries including the United States, Taiwan, India, and Indonesia, making 2024 the biggest election year in history.

Continue Reading

Tech

Navigating a shifting customer-engagement landscape with generative AI

Published

on

Navigating a shifting customer-engagement landscape with generative AI


A strategic imperative

Generative AI’s ability to harness customer data in a highly sophisticated manner means enterprises are accelerating plans to invest in and leverage the technology’s capabilities. In a study titled “The Future of Enterprise Data & AI,” Corinium Intelligence and WNS Triange surveyed 100 global C-suite leaders and decision-makers specializing in AI, analytics, and data. Seventy-six percent of the respondents said that their organizations are already using or planning to use generative AI.

According to McKinsey, while generative AI will affect most business functions, “four of them will likely account for 75% of the total annual value it can deliver.” Among these are marketing and sales and customer operations. Yet, despite the technology’s benefits, many leaders are unsure about the right approach to take and mindful of the risks associated with large investments.

Mapping out a generative AI pathway

One of the first challenges organizations need to overcome is senior leadership alignment. “You need the necessary strategy; you need the ability to have the necessary buy-in of people,” says Ayer. “You need to make sure that you’ve got the right use case and business case for each one of them.” In other words, a clearly defined roadmap and precise business objectives are as crucial as understanding whether a process is amenable to the use of generative AI.

The implementation of a generative AI strategy can take time. According to Ayer, business leaders should maintain a realistic perspective on the duration required for formulating a strategy, conduct necessary training across various teams and functions, and identify the areas of value addition. And for any generative AI deployment to work seamlessly, the right data ecosystems must be in place.

Ayer cites WNS Triange’s collaboration with an insurer to create a claims process by leveraging generative AI. Thanks to the new technology, the insurer can immediately assess the severity of a vehicle’s damage from an accident and make a claims recommendation based on the unstructured data provided by the client. “Because this can be immediately assessed by a surveyor and they can reach a recommendation quickly, this instantly improves the insurer’s ability to satisfy their policyholders and reduce the claims processing time,” Ayer explains.

All that, however, would not be possible without data on past claims history, repair costs, transaction data, and other necessary data sets to extract clear value from generative AI analysis. “Be very clear about data sufficiency. Don’t jump into a program where eventually you realize you don’t have the necessary data,” Ayer says.

The benefits of third-party experience

Enterprises are increasingly aware that they must embrace generative AI, but knowing where to begin is another thing. “You start off wanting to make sure you don’t repeat mistakes other people have made,” says Ayer. An external provider can help organizations avoid those mistakes and leverage best practices and frameworks for testing and defining explainability and benchmarks for return on investment (ROI).

Using pre-built solutions by external partners can expedite time to market and increase a generative AI program’s value. These solutions can harness pre-built industry-specific generative AI platforms to accelerate deployment. “Generative AI programs can be extremely complicated,” Ayer points out. “There are a lot of infrastructure requirements, touch points with customers, and internal regulations. Organizations will also have to consider using pre-built solutions to accelerate speed to value. Third-party service providers bring the expertise of having an integrated approach to all these elements.”

Continue Reading

Copyright © 2021 Seminole Press.