Connect with us

Tech

Edge computing: Powering the future of manufacturing

Published

on

Edge computing: Powering the future of manufacturing


Existing on-premises and centralized cloud infrastructure can’t support the vast computing needs of these powerful applications, which require low latency—or data-transfer delay—to smoothly transport and get real-time access to data. To reduce latency
and bandwidth use, as well as rein in costs, computing power and processes must be closer to the physical location of the data. The solution? Move computing power to local infrastructure at the “edge” of the network, rather than relying on distant
data centers.

A whopping 90% of industrial enterprises will use edge computing technology by 2022, according to Frost & Sullivan, while a recent IDC report (registration required) found that 40% of all organizations will invest in edge computing over the next year. “Edge computing is necessary
to enable the next-generation industrial revolution,” says Bike Xie, vice president of engineering at AI technology vendor Kneron. The future of AI and other automation technologies depends on the decentralized edge, he explains, whether it is
by connecting internet-of-things and other devices to distributed network nodes or implementing AI-enabled chips that can build algorithmic models autonomously.

“Edge computing is complementary to the cloud,” Xie says. “Like cloud, edge technology enables applications manufacturers need to both gain and apply the data-driven knowledge that will power smart factories and products.”

Manufacturing moves to the edge

The move toward edge computing is the result of a sea change in manufacturing over the past two decades. Manufacturers, whether they make industrial products, electronic equipment, or consumer goods, have transitioned slowly but steadily to increased
automation and self-monitoring of systems and processes to drive greater efficiency in producing products, maintaining equipment, and optimizing every link in the supply chain.

As manufacturers implement more sensor-based, automation-driven devices, they also produce more data than ever before. But often, data sets from sensor-based devices to centralized systems can quickly grow unwieldy, slowing down automation and making real-time
applications inoperable.

Edge computing allows manufacturers to make flexible choices about processing data to eliminate time lags and decrease bandwidth use, as well as about which data can be destroyed right after it is processed, says Xie. “Manufacturers can process data quickly
at the edge if data transmission to the cloud is a bottleneck, or move certain data to the cloud if latency and bandwidth are not an issue.” Not only does processing data closer to where it’s used save bandwidth and reduce costs, he adds,
but data is more secure because it’s processed right away.

IDC predicts that by 2023 more than 50% of new enterprise IT infrastructure deployed will be at the edge rather than in corporate data centers, up from less than 10% in 2020.

An example of toggling from cloud to edge comes from Paul Savill, senior vice president for product management and services at Lumen, a technology company that offers an edge computing platform.
Lumen recently did an installation at a newly built, million-square-foot factory. Robotic systems from about 50 different manufacturers rely on edge computing “because they needed to be within 5 milliseconds of latency to accurately control the robotics,” Savill says.
The deployment provides secure connectivity from the edge applications to the robotics manufacturers’ data centers, “where they collect information on a real-time basis.”

But for long-term storage of data and for machine-learning and analytics applications—all that goes in the public cloud, says Savill. Other, larger workloads are processed in big data centers “with vast computational power” that can process enormous sums of data quickly.

“That chain from the public cloud to the edge compute to on-premises is very important,” says Savill. “It gives customers the ability to leverage the latest advanced technologies in a way that saves them money and drives tremendous efficiency.”

Tech

This startup’s AI is smart enough to drive different types of vehicles

Published

on

This startup’s AI is smart enough to drive different types of vehicles


Jay Gierak at Ghost, which is based in Mountain View, California, is impressed by Wayve’s demonstrations and agrees with the company’s overall viewpoint. “The robotics approach is not the right way to do this,” says Gierak.

But he’s not sold on Wayve’s total commitment to deep learning. Instead of a single large model, Ghost trains many hundreds of smaller models, each with a specialism. It then hand codes simple rules that tell the self-driving system which models to use in which situations. (Ghost’s approach is similar to that taken by another AV2.0 firm, Autobrains, based in Israel. But Autobrains uses yet another layer of neural networks to learn the rules.)

According to Volkmar Uhlig, Ghost’s co-founder and CTO, splitting the AI into many smaller pieces, each with specific functions, makes it easier to establish that an autonomous vehicle is safe. “At some point, something will happen,” he says. “And a judge will ask you to point to the code that says: ‘If there’s a person in front of you, you have to brake.’ That piece of code needs to exist.” The code can still be learned, but in a large model like Wayve’s it would be hard to find, says Uhlig.

Still, the two companies are chasing complementary goals: Ghost wants to make consumer vehicles that can drive themselves on freeways; Wayve wants to be the first company to put driverless cars in 100 cities. Wayve is now working with UK grocery giants Asda and Ocado, collecting data from their urban delivery vehicles.

Yet, by many measures, both firms are far behind the market leaders. Cruise and Waymo have racked up hundreds of hours of driving without a human in their cars and already offer robotaxi services to the public in a small number of locations.

“I don’t want to diminish the scale of the challenge ahead of us,” says Hawke. “The AV industry teaches you humility.”

Continue Reading

Tech

Russia’s battle to convince people to join its war is being waged on Telegram

Published

on

Russia’s battle to convince people to join its war is being waged on Telegram


Just minutes after Putin announced conscription, the administrators of the anti-Kremlin Rospartizan group announced its own “mobilization,” gearing up its supporters to bomb military enlistment officers and the Ministry of Defense with Molotov cocktails. “Ordinary Russians are invited to die for nothing in a foreign land,” they wrote. “Agitate, incite, spread the truth, but do not be the ones who legitimize the Russian government.”

The Rospartizan Telegram group—which has more than 28,000 subscribers—has posted photos and videos purporting to show early action against the military mobilization, including burned-out offices and broken windows at local government buildings. 

Other Telegram channels are offering citizens opportunities for less direct, though far more self-interested, action—namely, how to flee the country even as the government has instituted a nationwide ban on selling plane tickets to men aged 18 to 65. Groups advising Russians on how to escape into neighboring countries sprung up almost as soon as Putin finished talking, and some groups already on the platform adjusted their message. 

One group, which offers advice and tips on how to cross from Russia to Georgia, is rapidly closing in on 100,000 members. The group dates back to at least November 2020, according to previously pinned messages; since then, it has offered information for potential travelers about how to book spots on minibuses crossing the border and how to travel with pets. 

After Putin’s declaration, the channel was co-opted by young men giving supposed firsthand accounts of crossing the border this week. Users are sharing their age, when and where they crossed the border, and what resistance they encountered from border guards, if any. 

For those who haven’t decided to escape Russia, there are still other messages about how to duck army call-ups. Another channel, set up shortly after Putin’s conscription drive, crowdsources information about where police and other authorities in Moscow are signing up men of military age. It gained 52,000 subscribers in just two days, and they are keeping track of photos, videos, and maps showing where people are being handed conscription orders. The group is one of many: another Moscow-based Telegram channel doing the same thing has more than 115,000 subscribers. Half that audience joined in 18 hours overnight on September 22. 

“You will not see many calls or advice on established media on how to avoid mobilization,” says Golovchenko. “You will see this on Telegram.”

The Kremlin is trying hard to gain supremacy on Telegram because of its current position as a rich seam of subterfuge for those opposed to Putin and his regime, Golovchenko adds. “What is at stake is the extent to which Telegram can amplify the idea that war is now part of Russia’s everyday life,” he says. “If Russians begin to realize their neighbors and friends and fathers are being killed en masse, that will be crucial.”

Continue Reading

Tech

The Download: YouTube’s deadly crafts, and DeepMind’s new chatbot

Published

on

The YouTube baker fighting back against deadly “craft hacks”


Ann Reardon is probably the last person whose content you’d expect to be banned from YouTube. A former Australian youth worker and a mother of three, she’s been teaching millions of loyal subscribers how to bake since 2011. But the removal email was referring to a video that was not Reardon’s typical sugar-paste fare.

Since 2018, Reardon has used her platform to warn viewers about dangerous new “craft hacks” that are sweeping YouTube, tackling unsafe activities such as poaching eggs in a microwave, bleaching strawberries, and using a Coke can and a flame to pop popcorn.

The most serious is “fractal wood burning”, which involves shooting a high-voltage electrical current across dampened wood to burn a twisting, turning branch-like pattern in its surface. The practice has killed at least 33 people since 2016.

On this occasion, Reardon had been caught up in the inconsistent and messy moderation policies that have long plagued the platform and in doing so, exposed a failing in the system: How can a warning about harmful hacks be deemed dangerous when the hack videos themselves are not? Read the full story.

—Amelia Tait

DeepMind’s new chatbot uses Google searches plus humans to give better answers

The news: The trick to making a good AI-powered chatbot might be to have humans tell it how to behave—and force the model to back up its claims using the internet, according to a new paper by Alphabet-owned AI lab DeepMind. 

How it works: The chatbot, named Sparrow, is trained on DeepMind’s large language model Chinchilla. It’s designed to talk with humans and answer questions, using a live Google search or information to inform those answers. Based on how useful people find those answers, it’s then trained using a reinforcement learning algorithm, which learns by trial and error to achieve a specific objective. Read the full story.

—Melissa Heikkilä

Sign up for MIT Technology Review’s latest newsletters

MIT Technology Review is launching four new newsletters over the next few weeks. They’re all brilliant, engaging and will get you up to speed on the biggest topics, arguments and stories in technology today. Monday is The Algorithm (all about AI), Tuesday is China Report (China tech and policy), Wednesday is The Spark (clean energy and climate), and Thursday is The Checkup (health and biotech).

Continue Reading

Copyright © 2021 Seminole Press.