Connect with us

Tech

Edge computing: Powering the future of manufacturing

Published

on

Edge computing: Powering the future of manufacturing


Existing on-premises and centralized cloud infrastructure can’t support the vast computing needs of these powerful applications, which require low latency—or data-transfer delay—to smoothly transport and get real-time access to data. To reduce latency
and bandwidth use, as well as rein in costs, computing power and processes must be closer to the physical location of the data. The solution? Move computing power to local infrastructure at the “edge” of the network, rather than relying on distant
data centers.

A whopping 90% of industrial enterprises will use edge computing technology by 2022, according to Frost & Sullivan, while a recent IDC report (registration required) found that 40% of all organizations will invest in edge computing over the next year. “Edge computing is necessary
to enable the next-generation industrial revolution,” says Bike Xie, vice president of engineering at AI technology vendor Kneron. The future of AI and other automation technologies depends on the decentralized edge, he explains, whether it is
by connecting internet-of-things and other devices to distributed network nodes or implementing AI-enabled chips that can build algorithmic models autonomously.

“Edge computing is complementary to the cloud,” Xie says. “Like cloud, edge technology enables applications manufacturers need to both gain and apply the data-driven knowledge that will power smart factories and products.”

Manufacturing moves to the edge

The move toward edge computing is the result of a sea change in manufacturing over the past two decades. Manufacturers, whether they make industrial products, electronic equipment, or consumer goods, have transitioned slowly but steadily to increased
automation and self-monitoring of systems and processes to drive greater efficiency in producing products, maintaining equipment, and optimizing every link in the supply chain.

As manufacturers implement more sensor-based, automation-driven devices, they also produce more data than ever before. But often, data sets from sensor-based devices to centralized systems can quickly grow unwieldy, slowing down automation and making real-time
applications inoperable.

Edge computing allows manufacturers to make flexible choices about processing data to eliminate time lags and decrease bandwidth use, as well as about which data can be destroyed right after it is processed, says Xie. “Manufacturers can process data quickly
at the edge if data transmission to the cloud is a bottleneck, or move certain data to the cloud if latency and bandwidth are not an issue.” Not only does processing data closer to where it’s used save bandwidth and reduce costs, he adds,
but data is more secure because it’s processed right away.

IDC predicts that by 2023 more than 50% of new enterprise IT infrastructure deployed will be at the edge rather than in corporate data centers, up from less than 10% in 2020.

An example of toggling from cloud to edge comes from Paul Savill, senior vice president for product management and services at Lumen, a technology company that offers an edge computing platform.
Lumen recently did an installation at a newly built, million-square-foot factory. Robotic systems from about 50 different manufacturers rely on edge computing “because they needed to be within 5 milliseconds of latency to accurately control the robotics,” Savill says.
The deployment provides secure connectivity from the edge applications to the robotics manufacturers’ data centers, “where they collect information on a real-time basis.”

But for long-term storage of data and for machine-learning and analytics applications—all that goes in the public cloud, says Savill. Other, larger workloads are processed in big data centers “with vast computational power” that can process enormous sums of data quickly.

“That chain from the public cloud to the edge compute to on-premises is very important,” says Savill. “It gives customers the ability to leverage the latest advanced technologies in a way that saves them money and drives tremendous efficiency.”

Tech

The emergent industrial metaverse

Published

on

The emergent industrial metaverse


Annika Hauptvogel, head of technology and innovation management at Siemens, describes the industrial metaverse as “immersive, making users feel as if they’re in a real environment; collaborative in real time; open enough for different applications to seamlessly interact; and trusted by the individuals and businesses that participate”—far more than simply a digital world. 

The industrial metaverse will revolutionize the way work is done, but it will also unlock significant new value for business and societies. By allowing businesses to model, prototype, and test dozens, hundreds, or millions of design iterations in real time and in an immersive, physics-based environment before committing physical and human resources to a project, industrial metaverse tools will usher in a new era of solving real-world problems digitally. 

“The real world is very messy, noisy, and sometimes hard to really understand,” says Danny Lange, senior vice president of artificial intelligence at Unity Technologies, a leading platform for creating and growing real-time 3-D content. “The idea of the industrial metaverse is to create a cleaner connection between the real world and the virtual world, because the virtual world is so much easier and cheaper to work with.” 

While real-life applications of the consumer metaverse are still developing, industrial metaverse use cases are purpose-driven, well aligned with real-world problems and business imperatives. The resource efficiencies enabled by industrial metaverse solutions may increase business competitiveness while also continually driving progress toward the sustainability, resilience, decarbonization, and dematerialization goals that are essential to human flourishing. 

This report explores what it will take to create the industrial metaverse, its potential impacts on business and society, the challenges ahead, and innovative use cases that will shape the future. Its key findings are as follows: 

• The industrial metaverse will bring together the digital and real worlds. It will enable a constant exchange of information, data, and decisions and empower industries to solve extraordinarily complex real-world problems digitally, changing how organizations operate and unlocking significant societal benefits. 

• The digital twin is a core metaverse building block. These virtual models simulate real-world objects in detail. The next generation of digital twins will be photorealistic, physics-based, AI-enabled, and linked in metaverse ecosystems. 

• The industrial metaverse will transform every industry. Currently existing digital twins illustrate the power and potential of the industrial metaverse to revolutionize design and engineering, testing, operations, and training. 

Continue Reading

Tech

The Download: China’s retro AI photos, and experts’ AI fears

Published

on

The Download: China’s retro AI photos, and experts’ AI fears


Across social media, a number of creators are generating nostalgic photographs of China with the help of AI. Even though these images get some details wrong, they are realistic enough to trick and impress many of their followers.

The pictures look sophisticated in terms of definition, sharpness, saturation, and color tone. Their realism is partly down to a recent major update of image-making artificial-intelligence program Midjourney that was released in mid-March, which is better not only at generating human hands but also at simulating various photography styles. 

It’s still relatively easy, even for untrained eyes, to tell that the photos are generated by an AI. But for some creators, their experiments are more about trying to recall a specific era in time than trying to trick their audience. Read the full story.

—Zeyi Yang

Zeyi’s story is from China Report, his weekly newsletter giving you the inside track on tech in China. Sign up to receive it in your inbox every Tuesday.

Read more of our reporting on AI-generated images:

+ These new tools let you see for yourself how biased AI image models are. Bias and stereotyping are still huge problems for systems like DALL-E 2 and Stable Diffusion, despite companies’ attempts to fix it. Read the full story.

Continue Reading

Tech

Evolutionary organizations reimagine the future

Published

on

Evolutionary organizations reimagine the future


The global technology consultancy Thoughtworks describes organizations that can respond to marketplace changes with continuous adaptation as “evolutionary organizations.” It argues that, instead of focusing only on technology change, organizations should focus on building capabilities that support ongoing reinvention. While many organizations recognize the benefit of adopting agile approaches in their technology capabilities and architectures, they have not extended these structures and ways of thinking throughout the operating model, which would allow their impact to extend beyond that of a single transformation project.

Global spending on digital transformation is growing at a brisk pace: 16.4% per year according to IDC. The firm’s 2021 “Worldwide Digital Transformation Spending Guide” forecasts that annual transformation expenditures will reach $2.8 trillion in 2025, more than double the spending in 2020.1 At the same time, research from Boston Consulting Group shows that 7 out of 10 digital transformation initiatives fall short of their objectives. Organizations that succeed, however, achieve almost double the earnings growth of those that fail and more than double the growth in the total value of their enterprises.2 Understanding how to make these transitions successful, then, should be of key interest to all business leaders.

This MIT Technology Review Insights report is based on a survey of 275 corporate leaders, supplemented by interviews with seven experts in digital transformation. Its key findings include the following:

Digital transformation is not solely a technology issue. Adopting new technology for its own sake does not set the organization up to continue to adapt to changing circumstances. Among survey respondents, however, transformation is still synonymous with tech, with 70% planning to adopt a new technology in the next year, but only 41% pursuing changes to their business model.

The business environment is changing faster than many organizations think. Most survey respondents (81%) believe their organization is more adaptable than average and nearly all (89%) say that they’re keeping up with or ahead of their competitors—suggesting a wide gap between the rapidly evolving reality and executives’ perceptions of their preparedness.

All organizations must build capabilities for continuous reinvention. The only way to keep up is for organizations to continuously change and evolve, but most traditional businesses lack the strategic flexibility necessary to do this. Nearly half of business leaders outside the C-suite (44%), for example, say organizational structure, silos, or hierarchy are the biggest obstacle to transformation at their firm.

Focusing on customer value and empowering employees are keys to organizational evolution. The most successful transformations prioritize creating customer value and enhancing customer and employee experience. Meeting evolving customer needs is the constant source of value in a world where everything is changing, but many traditional organizations fail to take this long view, with only 15% of respondents most concerned about failing to meet customer expectations if they fail to transform.

Rapid experimentation requires the ability to fail and recover quickly. Organizations agree that iterative, experimental processes are essential to finding the right solutions, with 81% saying they have adopted agile practices. Fewer are confident, however, in their ability to execute decisions quickly (76%)—or to shut down initiatives that aren’t working (60%).

Continue Reading

Copyright © 2021 Seminole Press.