Connect with us

Politics

How IoT Benefits Productivity on the Plant Floor

Published

on

How IoT Benefits Productivity on the Plant Floor


The manufacturing industry has been riding the Industry 4.0 wave over the last decade, bringing various technologies to the plant floors. This fourth industrial revolution has been all about digital technologies and smart manufacturing systems. These technologies aim to improve productivity to a great extent by reducing unplanned downtime and simplifying processes. A central part of these systems that allows them to function is the Internet of Things — IoT.

Image Credit: Aleksandar Littlewolf; Freepik

Industrial IoT

Industrial IoT (IIoT) refers to IoT used in industrial settings. IIoT is a network of various objects that transmit data to each other. IIoT is different from everyday IoT because of its applications: while the usual IoT deals with everyday tasks, IIoT works in a high-precision environment with various hazards around it. This requires using sensors of very high accuracy and robust build quality.

Another big difference between the two is the focus area. IoT is about convenience, while IIoT is about improving productivity by interconnecting assets in a production system.

Reduced downtime with PdM

Predictive maintenance (PdM) is a maintenance-scheduling technique that allocates maintenance downtime by analyzing the condition of assets in a manufacturing plant. To do this, technicians must work with interconnected, integrated systems with sensors that transfer asset data to a CMMS or EAM system. This infrastructure for transferring data across the system is IIoT.

PdM, made possible by IIoT, aims to reduce unplanned downtime to near zero. It utilizes real-time, as well as historical asset data, to calculate the optimum time for their maintenance. The downtime for maintenance helps the plant avoid breakages and unplanned downtime associated with reactive maintenance. Furthermore, since the predictive technique only suggests downtime when an asset requires maintenance, there is no need to spend resources on regular preventive maintenance.

Predictive maintenance keeps the plant running and avoids the wear and breakage of machines. In short, it’s a high-tech way of getting the best of both worlds to improve plant productivity. It also keeps all the assets in their best condition. With time and enough data for the algorithm to work on, PdM can help the plant achieve the dream of all plant managers — near-zero unplanned downtime. For any medium-sized or large plant, the advantages of using PdM — instead of reactive or preventive maintenance — usually justify investing in the software and hardware required.

Accurate asset tracking

Manufacturing plants may have thousands to even millions of assets in their inventories. Missing a plant asset can cause a chain reaction affecting multiple departments. The plant may lose valuable production hours and money searching for and replacing the faulty asset.

One good idea is to have a shared record of all assets. However, tracking every asset’s location 24/7 becomes tricky when dealing with such huge numbers.

IoT-based asset tracking is the perfect solution for any manufacturing plant dealing with extensive inventories. Multiple technologies like Bluetooth, wi-fi, and cellular networks are used for tracking assets. Their operation is based on the accuracy and range required for a specific application. To reduce capital investment, plants can use a combination of IIoT asset tracking for critical assets and barcodes for others.

One way to help your CMMS/EAM with asset location is to use IoT-based asset tracking. This can reduce asset theft and losses during transportation within the plant. In addition, the production hours saved by avoiding equipment search or replacement can lead to improvements in productivity. As IoT asset tracking provides real-time location of all assets — including the workers — the synchronization between the workers also gets better, making them more productive.

Inventory optimization

Inventory management and optimization are vital for any plant’s productivity. This involves keeping track of the available assets’ locations, prices, and reordering time. Poor inventory management can cause the plant to hold excess stock or lack raw materials and goods. Low stock means the plant isn’t meeting demand, and higher stock means the plant is wasting resources on managing inventory during low demand.

Industry 4.0 technologies like IIoT, data analytics, and AI/ML can contribute immensely to inventory management and optimization. For example, IIoT inventory tracking, combined with visualization tools in EAM/CMMS, can improve stock visibility. IIoT sensors can convey manufacturing dates, best-before dates, and other product-related information — it helps paint a clearer picture for the manager. Using this information, managers can decide which inventory to utilize first, what gets scrapped, and what to keep for a while. This improved visibility helps optimize inventory — which, in turn, keeps the plant productive and efficient.

Inventory optimization is also a part of supply chain optimization, which deals with maintaining optimum stock levels at all locations. It minimizes operating, transportation, and storage costs in the supply chain.

Safety brings productivity

You might have come across the supposition that plants must choose between safety and productivity. In reality, modern smart factories can be highly productive and have some of the safest facilities at the same time. Factory managers achieve this by using automation, IIoT, and AI solutions. IIoT connects various plant systems for monitoring production and safety. With the help of IoT, plant managers can get all the information into one place. They can then make significant decisions related to production and make real-time changes in case of an incident.

Gear sensors that track workers’ movement improve staff safety inside the plant. The sensors can warn workers they’re entering a high-risk area. Technicians can also program machines to turn themselves off when they detect humans in unsafe regions around them.

A safer workplace, with fewer incidents and injuries, can focus on productivity. Workers also improve productivity more if they don’t have to worry about unsafe work conditions.

 IIoT with Big Data

IIoT creates interconnected systems spanning entire plants — sometimes even connecting multiple plants. Such massive digital infrastructure ensures that assets generate vast amounts of data at all times. Unfortunately, most of this big data goes unused, which is a significant loss for the plant. On the other hand, the data holds valuable insights into the production system, which can help improve the efficiency and productivity of the plant.

IIoT collects data from inventory and supply chain management. This data can be used to forecast demand and calculate optimum inventory levels. In addition, engineers can identify and remove disruptions to improve productivity by analyzing data from different parts of the production system.

Furthermore, predictive maintenance software can provide data about the efficiency of different assets over time. This helps get the most out of all assets; it also helps with making an informed decision about replacing or upgrading an asset. Data is gold for any industry today, and manufacturing plants must get the most out of the data they produce to stay competitive.

IoT has become a central part of production systems during the fourth industrial revolution. The future of manufacturing is in interconnected production systems that communicate using IIoT. With time, technology will only become a bigger factor in the industry and people’s everyday lives. In the long run, the manufacturers on the bandwagon have a higher chance of staying competitive in the market.

Featured Image Credit: Kateryna Babaiev; Pexels.com; Thank you!

Eric Whitley

For over 30 years, Eric Whitley has been a noteworthy leader in the Manufacturing space. In addition to the many publications and articles Eric has written on various manufacturing topics, you may know him from his efforts leading the Total Productive Maintenance effort at Autoliv ASP or from his involvement in the Management Certification programs at The Ohio State University, where he served as an adjunct faculty member.
After an extensive career as a reliability and business improvement consultant, Eric joined L2L, where he currently serves as the Director of Smart Manufacturing. His role in this position is to help clients learn and implement L2L’s pragmatic and simple approach to corporate digital transformation.
Eric lives with his wife of 35 years in Northern Utah. When Eric is not working, he can usually be found on the water with a fishing rod in his hands.

Politics

Fintech Kennek raises $12.5M seed round to digitize lending

Published

on

Google eyed for $2 billion Anthropic deal after major Amazon play


London-based fintech startup Kennek has raised $12.5 million in seed funding to expand its lending operating system.

According to an Oct. 10 tech.eu report, the round was led by HV Capital and included participation from Dutch Founders Fund, AlbionVC, FFVC, Plug & Play Ventures, and Syndicate One. Kennek offers software-as-a-service tools to help non-bank lenders streamline their operations using open banking, open finance, and payments.

The platform aims to automate time-consuming manual tasks and consolidate fragmented data to simplify lending. Xavier De Pauw, founder of Kennek said:

“Until kennek, lenders had to devote countless hours to menial operational tasks and deal with jumbled and hard-coded data – which makes every other part of lending a headache. As former lenders ourselves, we lived and breathed these frustrations, and built kennek to make them a thing of the past.”

The company said the latest funding round was oversubscribed and closed quickly despite the challenging fundraising environment. The new capital will be used to expand Kennek’s engineering team and strengthen its market position in the UK while exploring expansion into other European markets. Barbod Namini, Partner at lead investor HV Capital, commented on the investment:

“Kennek has developed an ambitious and genuinely unique proposition which we think can be the foundation of the entire alternative lending space. […] It is a complicated market and a solution that brings together all information and stakeholders onto a single platform is highly compelling for both lenders & the ecosystem as a whole.”

The fintech lending space has grown rapidly in recent years, but many lenders still rely on legacy systems and manual processes that limit efficiency and scalability. Kennek aims to leverage open banking and data integration to provide lenders with a more streamlined, automated lending experience.

The seed funding will allow the London-based startup to continue developing its platform and expanding its team to meet demand from non-bank lenders looking to digitize operations. Kennek’s focus on the UK and Europe also comes amid rising adoption of open banking and open finance in the regions.

Featured Image Credit: Photo from Kennek.io; Thank you!

Radek Zielinski

Radek Zielinski is an experienced technology and financial journalist with a passion for cybersecurity and futurology.

Continue Reading

Politics

Fortune 500’s race for generative AI breakthroughs

Published

on

Deanna Ritchie


As excitement around generative AI grows, Fortune 500 companies, including Goldman Sachs, are carefully examining the possible applications of this technology. A recent survey of U.S. executives indicated that 60% believe generative AI will substantially impact their businesses in the long term. However, they anticipate a one to two-year timeframe before implementing their initial solutions. This optimism stems from the potential of generative AI to revolutionize various aspects of businesses, from enhancing customer experiences to optimizing internal processes. In the short term, companies will likely focus on pilot projects and experimentation, gradually integrating generative AI into their operations as they witness its positive influence on efficiency and profitability.

Goldman Sachs’ Cautious Approach to Implementing Generative AI

In a recent interview, Goldman Sachs CIO Marco Argenti revealed that the firm has not yet implemented any generative AI use cases. Instead, the company focuses on experimentation and setting high standards before adopting the technology. Argenti recognized the desire for outcomes in areas like developer and operational efficiency but emphasized ensuring precision before putting experimental AI use cases into production.

According to Argenti, striking the right balance between driving innovation and maintaining accuracy is crucial for successfully integrating generative AI within the firm. Goldman Sachs intends to continue exploring this emerging technology’s potential benefits and applications while diligently assessing risks to ensure it meets the company’s stringent quality standards.

One possible application for Goldman Sachs is in software development, where the company has observed a 20-40% productivity increase during its trials. The goal is for 1,000 developers to utilize generative AI tools by year’s end. However, Argenti emphasized that a well-defined expectation of return on investment is necessary before fully integrating generative AI into production.

To achieve this, the company plans to implement a systematic and strategic approach to adopting generative AI, ensuring that it complements and enhances the skills of its developers. Additionally, Goldman Sachs intends to evaluate the long-term impact of generative AI on their software development processes and the overall quality of the applications being developed.

Goldman Sachs’ approach to AI implementation goes beyond merely executing models. The firm has created a platform encompassing technical, legal, and compliance assessments to filter out improper content and keep track of all interactions. This comprehensive system ensures seamless integration of artificial intelligence in operations while adhering to regulatory standards and maintaining client confidentiality. Moreover, the platform continuously improves and adapts its algorithms, allowing Goldman Sachs to stay at the forefront of technology and offer its clients the most efficient and secure services.

Featured Image Credit: Photo by Google DeepMind; Pexels; Thank you!

Deanna Ritchie

Managing Editor at ReadWrite

Deanna is the Managing Editor at ReadWrite. Previously she worked as the Editor in Chief for Startup Grind and has over 20+ years of experience in content management and content development.

Continue Reading

Politics

UK seizes web3 opportunity simplifying crypto regulations

Published

on

Deanna Ritchie


As Web3 companies increasingly consider leaving the United States due to regulatory ambiguity, the United Kingdom must simplify its cryptocurrency regulations to attract these businesses. The conservative think tank Policy Exchange recently released a report detailing ten suggestions for improving Web3 regulation in the country. Among the recommendations are reducing liability for token holders in decentralized autonomous organizations (DAOs) and encouraging the Financial Conduct Authority (FCA) to adopt alternative Know Your Customer (KYC) methodologies, such as digital identities and blockchain analytics tools. These suggestions aim to position the UK as a hub for Web3 innovation and attract blockchain-based businesses looking for a more conducive regulatory environment.

Streamlining Cryptocurrency Regulations for Innovation

To make it easier for emerging Web3 companies to navigate existing legal frameworks and contribute to the UK’s digital economy growth, the government must streamline cryptocurrency regulations and adopt forward-looking approaches. By making the regulatory landscape clear and straightforward, the UK can create an environment that fosters innovation, growth, and competitiveness in the global fintech industry.

The Policy Exchange report also recommends not weakening self-hosted wallets or treating proof-of-stake (PoS) services as financial services. This approach aims to protect the fundamental principles of decentralization and user autonomy while strongly emphasizing security and regulatory compliance. By doing so, the UK can nurture an environment that encourages innovation and the continued growth of blockchain technology.

Despite recent strict measures by UK authorities, such as His Majesty’s Treasury and the FCA, toward the digital assets sector, the proposed changes in the Policy Exchange report strive to make the UK a more attractive location for Web3 enterprises. By adopting these suggestions, the UK can demonstrate its commitment to fostering innovation in the rapidly evolving blockchain and cryptocurrency industries while ensuring a robust and transparent regulatory environment.

The ongoing uncertainty surrounding cryptocurrency regulations in various countries has prompted Web3 companies to explore alternative jurisdictions with more precise legal frameworks. As the United States grapples with regulatory ambiguity, the United Kingdom can position itself as a hub for Web3 innovation by simplifying and streamlining its cryptocurrency regulations.

Featured Image Credit: Photo by Jonathan Borba; Pexels; Thank you!

Deanna Ritchie

Managing Editor at ReadWrite

Deanna is the Managing Editor at ReadWrite. Previously she worked as the Editor in Chief for Startup Grind and has over 20+ years of experience in content management and content development.

Continue Reading

Copyright © 2021 Seminole Press.