Connect with us

Tech

How to accelerate the world into the 5G era

Published

on

How to accelerate the world into the 5G era


Demand for 5G smartphones is reaching an all-time high

In 2021, consumers and institutions alike are fast-tracking a digital revolution in an unprecedented era of social distancing and remote work—a trend that may continue long after the pandemic subsides.

The time is ripe for many commercialized products and services to ride the wave of unparalleled high-speed connectivity and minimal latency enabled by 5G. Yet, the technology at the forefront of them all is without a doubt the smartphone. By combining mobile telephone and computing functions within a singular multi-purpose device, smartphones have brought about a profound scale of mobility and accessibility with one-stop services that empower consumers across every aspect of their daily lives.

Some may look back fondly on the good old days of the mobile phone, when voice calls and text messaging were all we had access to, in the absence of addictive social media platforms and the seemingly endless barrage of notifications we receive nowadays. Nonetheless, the instantaneous connectivity of ever-improving mobile networks and increasingly diverse applications of smartphones will undeniably continue to bring value to users.

According to a forecast by vivo, one of the leading smartphone makers, demand for 5G devices is catching up to the entirety of the smartphone market as researchers recorded exponential growth between 2020 and 2021.

Another report, published by Gartner, showed that the worldwide demand for smartphones with 5G capabilities more than doubled this year. “In 2020, consumers reduced spending on smartphones, but the availability of new products will see users drive significant uptick in demand in 2021. Lower-end 5G smartphones, which are becoming more prevalent outside China, are poised to drive more momentum for 5G smartphones in 2021 across all regions,” said Anshul Gupta, senior research director at Gartner.

How did we get to where we are today, and how did smartphone brands take us here? 

Defining the fifth generation

5G is the latest global wireless standard, otherwise known as the 5th generation of cellular mobile communication technology. Compared to 4G LTE technology, 5G increases flux density a hundredfold and connection density tenfold. This allows for a new kind of digital infrastructure that can connect virtually everything and everyone via peak data transmission speeds with minimal latency to provide a uniform experience to us all, culminating in higher efficiency and optimized performance to empower new user experiences.

Hundreds of thousands of industries are becoming integrated, owing to the reliable and streamlined network between machines, devices, and other digital objects. With many creative applications ranging from augmented reality/virtual reality experiences to vehicle-to-everything driverless cars and many more, 5G will provide humankind with the foundation to establish smart cities with comprehensive internet-of-things technologies that can efficiently restructure our lived environments and redefine our everyday lifestyles.

It goes without saying that 5G can facilitate limitless applications, on both industrial and consumer levels. For tech-savvy individuals accustomed to heavy device usage loads, 5G will be game-changing by elevating their collective digital devices into powerful, cloud-synced gateways capable of tapping into the most resource-intensive applications and data streams. Many industries are currently undergoing paradigm shifts as enterprises and countries race to propel society into the next phase of technological transformation.

Gearing up for the 5G race – a deep dive with vivo

The 5G technical standard was formed by a series of innovative R&D efforts led by companies such as vivo. The 5G products or services consumers are presented with today are actually a refined conglomeration of technologies formulated by the 3rd Generation Partnership Project (3GPP), a consortium of international telecom standards organizations that provide a stable platform for collaboration.

As the entire world becomes familiar with the limitless possibilities of contemporary mobile communications technology, consumers are looking to arm themselves with devices that contain cutting-edge capabilities in order to complement their connected and fast-paced daily lifestyles.

Corporations and governments are both racing to gear up in preparation for the new digital gold rush. Unbeknownst to many, battles are fought and alliances are formed every day as companies cannibalize each other in the race to hold the most patents for 5G technologies.

Vivo, one of the top players, has participated in the 3GPP 5G standard formulation for over five years. As one of many companies that set their sights on 5G technology, vivo established special 5G task forces back in December 2016 across Beijing and Shenzhen, China. One month later, vivo made its debut at the 2017 3GPP meeting. Since then, vivo has submitted over 5,000 5G proposals to the 3GPP, leading to 15 technical features and getting three technical projects approved. With more than 100 global standard experts staffed at its communication research institute, vivo now holds over 3,000 patents for 5G inventions.

User-oriented innovation

As a leading smartphone company with in-depth R&D capabilities, vivo is dedicated to accelerating the empowerment of consumers en masse in this new era by designing cutting-edge 5G smartphones that are available at every price point. Having amassed over 400 million users worldwide, vivo has a deep understanding of evolving consumer demands and strives to bridge users with the digital world by becoming one of the leading contributors to 5G technology in the industry.

“The main gateway for consumers to indulge in the new digital era must be the most accessible, portable, cost-effective, and readily available digital device of them all: the smartphone. A leader in both smartphone manufacturing and 5G connectivity, vivo has been designing a diverse lineup of products that are ready for the next generation of connectivity to bring joy to users worldwide at modest price points,” says Rakesh Tamrakar, 5G standards expert at vivo. 

Tamrakar has 20 years of experience in the mobile communications industry. He is one of the lead delegates representing vivo in the 3GPP, holds numerous patents, and has chaired multiple 3GPP RAN1 sessions (which specify the physical layer of radio interfaces) that led to the successful standardization of MIMO, NR on unlicensed spectrum technologies. Multiple Input Multiple Output (MIMO) is a key 5G technology that increases throughput and signal-to-noise ratio, while NR is a new radio interface and radio access technology for cellular networks. He has authored and contributed numerous technical papers on the subject of 3GPP RAN1 in 3G, 4G, and 5G standards.

“Brought to life by our strong R&D network across nine innovation centers and supported by research teams across the globe, vivo knows consumers best within the industry. We focus on innovations in hardware design and the software ecosystem to improve terminal performance and user experiences. Putting end users at the center of everything we do, vivo invests heavily into 5G connectivity to reach the stage of product realization and getting this technology into the hands of consumers,” he adds.

5G research, standardization, and industrialization by vivo

Vivo’s unique user-oriented innovation is the genesis behind its numerous patented contributions to 5G standards, many of which have been universally acclaimed at the 3GPP meeting and are currently already being adapted for everyday smartphone users.

One of vivo’s most notable contributions includes the standardization and performance enhancement of Rel-17 multi-SIM technology. Previously, an incoming voice call from one competing 5G SIM card would interrupt the data flow of the other, resulting in abysmal performance as one would cancel the other. Having discovered early on that consumers had a preference for 5G smartphones with dual-SIM card slots for greater flexibility in different usage scenarios, vivo researchers successfully sought to negate the clash, leading to the existence of multi-SIM 5G smartphones on the market today.  

The initial implementation of 5G technology was initially found to be quite resource-draining compared to devices running on 4G. However, consumers had grown accustomed to the substantial usage time allowed by previous smartphones.

Always innovating with the user in mind, the Rel-16 terminal power-saving technology patented by vivo manages to simplify terminal actions. It lowers normal energy consumption by creating a new “dozing” state, allowing the device software to become inactive while the hardware becomes idle. 5G smartphones can now intelligently catch every chance to take a rest, thereby prolonging battery life.

Additionally, vivo underwent algorithm and system optimization to facilitate this technology, combined with 120-watt fast charging to ensure complete user satisfaction with their devices. Select vivo smartphones are housed with a superconducting carbon fiber liquid cooling system to prevent device overheating, which is especially prevalent during intensive multimedia entertainment or e-sports usage scenarios.

Another issue raised by 5G technology is the increasing number of antennas and components installed inside a smartphone. However, users are relentless in their pursuit for ultra-thin smartphones encased in sleek metallic exteriors. Never one to disappoint, vivo’s proprietary 3D stack design uniquely encases all of this industry-leading technology to allow new 5G smartphones to be even slimmer than its 4G predecessors.

6G visionary

As 5G commercial networks are gradually deployed around the world and progressively advanced devices increasingly permeate every aspect of our livelihoods, thought leaders of the mobile industry are already looking forward to its next generation: 6G.

Vivo is part of a select few that hold the extensive expertise and in-depth understanding of consumer needs in order to turn this vision into a reality. Along with leading companies, research groups, and academic institutions, this combined elite collective is expected to reach a consensus on the ideation and requirements for this future generation of connectivity. To kickstart this exciting new era, the vivo Communications Research Institute (VCRI) released two white papers in late 2020 that break down the facets of 6G technology. Providing a diverse set of hypothetical scenarios and case studies, vivo communication standard experts have analyzed how the sixth generation will embody much more than technological transformation as it merges our physical and digital worlds.

“Currently, mobile infrastructure is still relatively isolated from the physical world, existing solely as an auxiliary tool for consumer usage. An extreme degree of seamlessness will be required to dynamically connect our physical surrounding with the omnipresent digital systems. In 2030 and beyond, 6G standard technologies will begin to foster a ubiquitous, sophisticated, real-time, and fully integrated digital world. This new realm will revolutionize thousands of industries with an extraordinary variety of applications to result in an efficient, sustainable, and eco-friendly future world,” says Tamrakar.  

6G communication systems will comprise many device terminals to realize the agile perception and accurate control between digital systems with our physical domain; this is comparable to the nerve endings that perceive essential information from every inch of the human body for our central nervous system to take responsive measures. As such, a large number of harmoniously connected and intelligent terminals in the form of smartphones or wearable devices will be fundamentally required in order for the entire IoE (internet-of-everything) system to be effective. To that end, vivo has launched a smartwatch, wireless earbuds, and Jovi AI assistant to introduce users to its own flourishing digital ecosystem.

Notwithstanding all of this exhaustive groundwork laid by technology companies, the 5G race and the 6G marathon are far from over. Nonetheless, affordable smartphones with innovative features will continue to act as the interface for everyday users to engage with the all-encompassing network infrastructure, to accelerate the impending intelligent transformation of society.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Tech

The Download: generative AI for video, and detecting AI text

Published

on

The original startup behind Stable Diffusion has launched a generative AI for video


The original startup behind Stable Diffusion has launched a generative AI for video

What’s happened: Runway, the generative AI startup that co-created last year’s breakout text-to-image model Stable Diffusion, has released an AI model that can transform existing videos into new ones by applying styles from a text prompt or reference image.

What it does: In a demo reel posted on its website, Runway shows how the model, called Gen-1, can turn people on a street into claymation puppets, and books stacked on a table into a cityscape at night. Other recent text-to-video models can generate very short video clips from scratch, but because Gen-1adapts existing footage it can produce much longer videos.

Why it matters: Last year’s explosion in generative AI was fueled by the millions of people who got their hands on powerful creative tools for the first time and shared what they made, and Runway hopes Gen-1 will have a similar effect on generated videos. Read the full story.

—Will Douglas Heaven

Why detecting AI-generated text is so difficult (and what to do about it)

Last week, OpenAI unveiled a tool that can detect text produced by its AI system ChatGPT. But if you’re a teacher who fears the coming deluge of ChatGPT-generated essays, don’t get too excited.

Continue Reading

Tech

Why detecting AI-generated text is so difficult (and what to do about it)

Published

on

Why detecting AI-generated text is so difficult (and what to do about it)


This tool is OpenAI’s response to the heat it’s gotten from educators, journalists, and others for launching ChatGPT without any ways to detect text it has generated. However, it is still very much a work in progress, and it is woefully unreliable. OpenAI says its AI text detector correctly identifies 26% of AI-written text as “likely AI-written.” 

While OpenAI clearly has a lot more work to do to refine its tool, there’s a limit to just how good it can make it. We’re extremely unlikely to ever get a tool that can spot AI-generated text with 100% certainty. It’s really hard to detect AI-generated text because the whole point of AI language models is to generate fluent and human-seeming text, and the model is mimicking text created by humans, says Muhammad Abdul-Mageed, a professor who oversees research in natural-language processing and machine learning at the University of British Columbia

We are in an arms race to build detection methods that can match the latest, most powerful models, Abdul-Mageed adds. New AI language models are more powerful and better at generating even more fluent language, which quickly makes our existing detection tool kit outdated. 

OpenAI built its detector by creating a whole new AI language model akin to ChatGPT that is specifically trained to detect outputs from models like itself. Although details are sparse, the company apparently trained the model with examples of AI-generated text and examples of human-generated text, and then asked it to spot the AI-generated text. We asked for more information, but OpenAI did not respond. 

Last month, I wrote about another method for detecting text generated by an AI: watermarks. These act as a sort of secret signal in AI-produced text that allows computer programs to detect it as such. 

Researchers at the University of Maryland have developed a neat way of applying watermarks to text generated by AI language models, and they have made it freely available. These watermarks would allow us to tell with almost complete certainty when AI-generated text has been used. 

The trouble is that this method requires AI companies to embed watermarking in their chatbots right from the start. OpenAI is developing these systems but has yet to roll them out in any of its products. Why the delay? One reason might be that it’s not always desirable to have AI-generated text watermarked. 

One of the most promising ways ChatGPT could be integrated into products is as a tool to help people write emails or as an enhanced spell-checker in a word processor. That’s not exactly cheating. But watermarking all AI-generated text would automatically flag these outputs and could lead to wrongful accusations.

Continue Reading

Tech

The original startup behind Stable Diffusion has launched a generative AI for video

Published

on

The original startup behind Stable Diffusion has launched a generative AI for video


Set up in 2018, Runway has been developing AI-powered video-editing software for several years. Its tools are used by TikTokers and YouTubers as well as mainstream movie and TV studios. The makers of The Late Show with Stephen Colbert used Runway software to edit the show’s graphics; the visual effects team behind the hit movie Everything Everywhere All at Once used the company’s tech to help create certain scenes.  

In 2021, Runway collaborated with researchers at the University of Munich to build the first version of Stable Diffusion. Stability AI, a UK-based startup, then stepped in to pay the computing costs required to train the model on much more data. In 2022, Stability AI took Stable Diffusion mainstream, transforming it from a research project into a global phenomenon. 

But the two companies no longer collaborate. Getty is now taking legal action against Stability AI—claiming that the company used Getty’s images, which appear in Stable Diffusion’s training data, without permission—and Runway is keen to keep its distance.

Gen-1 represents a new start for Runway. It follows a smattering of text-to-video models revealed late last year, including Make-a-Video from Meta and Phenaki from Google, both of which can generate very short video clips from scratch. It is also similar to Dreamix, a generative AI from Google revealed last week, which can create new videos from existing ones by applying specified styles. But at least judging from Runway’s demo reel, Gen-1 appears to be a step up in video quality. Because it transforms existing footage, it can also produce much longer videos than most previous models. (The company says it will post technical details about Gen-1 on its website in the next few days.)   

Unlike Meta and Google, Runway has built its model with customers in mind. “This is one of the first models to be developed really closely with a community of video makers,” says Valenzuela. “It comes with years of insight about how filmmakers and VFX editors actually work on post-production.”

Gen-1, which runs on the cloud via Runway’s website, is being made available to a handful of invited users today and will be launched to everyone on the waitlist in a few weeks.

Last year’s explosion in generative AI was fueled by the millions of people who got their hands on powerful creative tools for the first time and shared what they made with them. Valenzuela hopes that putting Gen-1 into the hands of creative professionals will soon have a similar impact on video.

“We’re really close to having full feature films being generated,” he says. “We’re close to a place where most of the content you’ll see online will be generated.”

Continue Reading

Copyright © 2021 Seminole Press.