Connect with us

Politics

Is Technological Progress Slowing Down? – ReadWrite

Published

on

Nate Nead


Technology is amazing. And it seems to get even more impressive every year. Every day, there’s some new gadget or breakthrough in the news worth getting excited about. And every year, our collective capabilities as a species seem to be getting broader and further-reaching. 

For decades, we’ve seen a veritable explosion in technological development – an exponential curve of innovation that constantly takes us to new heights. And we’re told that this technological curve is continuing – that we’re still growing exponentially, with massive leaps forward every year. 

But is this really true? 

There’s a compelling case to be made that while technological progress is still moving forward, it’s slowing down. And if that’s true, we need to be prepared for the consequences of such a shift in momentum. 

The Low-Hanging Fruit

Our first clue that tech innovation is slowing down is a change to the traditional model of tech development. In many ways, technology is all about solving problems; every new tech advancement is a solution for some long-standing issue. It makes sense that our current wave of tech advancement resembles an exponential curve because new technologies make it faster and easier to solve other, often unrelated problems. 

For example, the development of the internet was revolutionary for technological development overall. People now can review massive databases of information, communicate with other like-minded professionals, share ideas, and even publish their ideas to a broader audience. These capabilities have led to new ideas and new technologies that otherwise could never have been possible. 

But this trajectory is limited. In the course of tech development, we often explore new territory very quickly – but only for a limited period of time. Think of it this way. As early human beings began exploring new territory, they found themselves surrounded by an abundance of game animals, trees, and fish. But as they hunted, harvested lumber, and fished, many of those resources began to dry up. In other words, they’d taken all the low-hanging fruit, and were forced to come up with new ideas. They had to explore new territory, invent new agricultural methods, and even find new sources of nourishment. 

Our current burst of technological progress could be almost exclusively focused on low-hanging fruit. We’re solving the easiest problems first, and we’re solving them in quick succession. But the hard problems – like general intelligence-level AI, efficient battery storage, and even finding a cure for cancer – show little progress even over the course of decades. 

Any futurist will tell you that all of humanity’s problems can be solved eventually. But we have to understand that our pace of innovation tends to slow down as we master all the “easy” problems and start looking at the “hard” ones. 

Digital Innovation vs. Chemical Innovation 

We also need to understand that most of the tech progress we’ve seen in the past 30 or 40 years has been limited to the digital world. These technologies have been astounding, accelerated by novel high-growth startups, but they’ve almost been exclusively focused on digital communication efficiency. The internet, software engineering, and AI have all taken amazing strides forward. But on the level of chemistry and physics, we’ve advanced very little. 

We’re still incredibly reliant on non-renewable resources to fuel our consumption. We haven’t discovered any groundbreaking new elements, molecules, or chemical processes. And our understanding of the universe at the base level of physics hasn’t changed much, if at all, since the 1980s. We’re still struggling to reconcile major physics ideas that were first introduced nearly 100 years ago. 

So what? Digital innovation may be so incredibly fast-paced that it can be the conduit through which we solve all other problems, right? 

That may not be the case. For the majority of the digital age, we’ve depended on the momentum of Moore’s law. Moore’s law is an informal observation that the number of transistors that we can fit on a dense integrated circuit tends to double every two years. In other words, our computing power can double every two years, leading to major breakthroughs in a number of different technologies. 

However, it appears that the age of Moore’s law may be nearing its end. There’s an absolute physical limit to the amount of space on a transistor chip. With exponential growth since the 1960s, we’ve gone from integrated circuits with 10 transistors to ICs with something like 10 billion transistors. How much further can we really go without breaking the laws of physics? 

We may be able to push things even further, but to do so, we’ll need to invest in high-end chipmaking equipment and innovate entirely new manufacturing methods. Doing so will sharply increase the cost of chip production, ultimately negating the cost-effectiveness benefits. 

Of course, there’s a solid counterargument here. It holds that digital innovation may continue at the same rate of exponential growth even if we’re unable to maintain the consistency of Moore’s law; even if the number of transistors on a chip remains more or less stagnant, we can find new ways to use the chips we already have. 

Consumer Products and Perceptions 

We see an endless conveyor belt of new gadgets and new consumer-facing technologies emerging on a constant basis. But how innovative are all these products, really? 

Apple introduced the iPhone, a game-changing new type of technology, back in 2007. It combined several existing technologies into one, comprehensive unit, and changed the way we think about mobile tech forever. In the past 14 years, how much innovation have we truly seen in this space? We’ve seen a flock of competitors coming out with smartphone options of their own. And of course, we’ve seen Apple unveil a new model of iPhone nearly every year. 

But these new, “innovative” smartphones only make marginal improvements to the original formula. Their cameras are sharper. Their processing power is beefier. Their storage capacity and battery life are more robust. But they can hardly be considered new technology, at least not at the same groundbreaking level of their predecessor. 

As consumers, we’re getting used to a slower pace of technological breakthroughs. We’re content to see new smartphones, new video game consoles, and new TVs that offer merely slight improvements over their counterparts, rather than completely changing the game – and this is enough for us to continue thinking that we’re living in an age of exponential technology growth. 

What Does a Tech Slowdown Mean? 

So what does all this mean? Is it really a big deal that there’s a major tech slowdown? 

Much of our economic growth depends on technological innovation. Countless retirement plans like 401(k) depend on the growth of the stock market, which in turn depends on baseline economic growth; a slowdown in tech innovation leads to a slowdown in GDP, resulting in a cascade of economic effects that could cripple the economy at large. 

The larger danger is that we don’t realize the tech slowdown is occurring until it’s too late. Tech stocks are being traded and inflated as if they’re inventing fundamentally new technologies; as a general trend, they multiply in price in response to even the most meager announcements. If carried out for years to come, this could result in a massive tech bubble, or a broader investment bubble, that pops once investors begin realizing just how slow our growth has crawled. 

Of course, this slowdown may be merely a temporary lull. Just as the digital era sparked the launch of a million new problem-solving technologies, we may be on the cusp of another, equally paradigm-shifting breakthrough. To get there, we’ll need to refocus our research efforts and accept the limitations of the digital space. 

Our half-century long honeymoon with explosive tech growth in the digital era has been incredible, but it’s nearing its end. If we want to keep moving forward (as we should), we need to reset our expectations, redouble our research efforts, and start looking into new territory for technological expansion. 

Nate Nead

Nate Nead is the CEO & Managing Member of Nead, LLC, a consulting company that provides strategic advisory services across multiple disciplines including finance, marketing and software development. For over a decade Nate had provided strategic guidance on M&A, capital procurement, technology and marketing solutions for some of the most well-known online brands. He and his team advise Fortune 500 and SMB clients alike. The team is based in Seattle, Washington; El Paso, Texas and West Palm Beach, Florida.

Politics

Fintech Kennek raises $12.5M seed round to digitize lending

Published

on

Google eyed for $2 billion Anthropic deal after major Amazon play


London-based fintech startup Kennek has raised $12.5 million in seed funding to expand its lending operating system.

According to an Oct. 10 tech.eu report, the round was led by HV Capital and included participation from Dutch Founders Fund, AlbionVC, FFVC, Plug & Play Ventures, and Syndicate One. Kennek offers software-as-a-service tools to help non-bank lenders streamline their operations using open banking, open finance, and payments.

The platform aims to automate time-consuming manual tasks and consolidate fragmented data to simplify lending. Xavier De Pauw, founder of Kennek said:

“Until kennek, lenders had to devote countless hours to menial operational tasks and deal with jumbled and hard-coded data – which makes every other part of lending a headache. As former lenders ourselves, we lived and breathed these frustrations, and built kennek to make them a thing of the past.”

The company said the latest funding round was oversubscribed and closed quickly despite the challenging fundraising environment. The new capital will be used to expand Kennek’s engineering team and strengthen its market position in the UK while exploring expansion into other European markets. Barbod Namini, Partner at lead investor HV Capital, commented on the investment:

“Kennek has developed an ambitious and genuinely unique proposition which we think can be the foundation of the entire alternative lending space. […] It is a complicated market and a solution that brings together all information and stakeholders onto a single platform is highly compelling for both lenders & the ecosystem as a whole.”

The fintech lending space has grown rapidly in recent years, but many lenders still rely on legacy systems and manual processes that limit efficiency and scalability. Kennek aims to leverage open banking and data integration to provide lenders with a more streamlined, automated lending experience.

The seed funding will allow the London-based startup to continue developing its platform and expanding its team to meet demand from non-bank lenders looking to digitize operations. Kennek’s focus on the UK and Europe also comes amid rising adoption of open banking and open finance in the regions.

Featured Image Credit: Photo from Kennek.io; Thank you!

Radek Zielinski

Radek Zielinski is an experienced technology and financial journalist with a passion for cybersecurity and futurology.

Continue Reading

Politics

Fortune 500’s race for generative AI breakthroughs

Published

on

Deanna Ritchie


As excitement around generative AI grows, Fortune 500 companies, including Goldman Sachs, are carefully examining the possible applications of this technology. A recent survey of U.S. executives indicated that 60% believe generative AI will substantially impact their businesses in the long term. However, they anticipate a one to two-year timeframe before implementing their initial solutions. This optimism stems from the potential of generative AI to revolutionize various aspects of businesses, from enhancing customer experiences to optimizing internal processes. In the short term, companies will likely focus on pilot projects and experimentation, gradually integrating generative AI into their operations as they witness its positive influence on efficiency and profitability.

Goldman Sachs’ Cautious Approach to Implementing Generative AI

In a recent interview, Goldman Sachs CIO Marco Argenti revealed that the firm has not yet implemented any generative AI use cases. Instead, the company focuses on experimentation and setting high standards before adopting the technology. Argenti recognized the desire for outcomes in areas like developer and operational efficiency but emphasized ensuring precision before putting experimental AI use cases into production.

According to Argenti, striking the right balance between driving innovation and maintaining accuracy is crucial for successfully integrating generative AI within the firm. Goldman Sachs intends to continue exploring this emerging technology’s potential benefits and applications while diligently assessing risks to ensure it meets the company’s stringent quality standards.

One possible application for Goldman Sachs is in software development, where the company has observed a 20-40% productivity increase during its trials. The goal is for 1,000 developers to utilize generative AI tools by year’s end. However, Argenti emphasized that a well-defined expectation of return on investment is necessary before fully integrating generative AI into production.

To achieve this, the company plans to implement a systematic and strategic approach to adopting generative AI, ensuring that it complements and enhances the skills of its developers. Additionally, Goldman Sachs intends to evaluate the long-term impact of generative AI on their software development processes and the overall quality of the applications being developed.

Goldman Sachs’ approach to AI implementation goes beyond merely executing models. The firm has created a platform encompassing technical, legal, and compliance assessments to filter out improper content and keep track of all interactions. This comprehensive system ensures seamless integration of artificial intelligence in operations while adhering to regulatory standards and maintaining client confidentiality. Moreover, the platform continuously improves and adapts its algorithms, allowing Goldman Sachs to stay at the forefront of technology and offer its clients the most efficient and secure services.

Featured Image Credit: Photo by Google DeepMind; Pexels; Thank you!

Deanna Ritchie

Managing Editor at ReadWrite

Deanna is the Managing Editor at ReadWrite. Previously she worked as the Editor in Chief for Startup Grind and has over 20+ years of experience in content management and content development.

Continue Reading

Politics

UK seizes web3 opportunity simplifying crypto regulations

Published

on

Deanna Ritchie


As Web3 companies increasingly consider leaving the United States due to regulatory ambiguity, the United Kingdom must simplify its cryptocurrency regulations to attract these businesses. The conservative think tank Policy Exchange recently released a report detailing ten suggestions for improving Web3 regulation in the country. Among the recommendations are reducing liability for token holders in decentralized autonomous organizations (DAOs) and encouraging the Financial Conduct Authority (FCA) to adopt alternative Know Your Customer (KYC) methodologies, such as digital identities and blockchain analytics tools. These suggestions aim to position the UK as a hub for Web3 innovation and attract blockchain-based businesses looking for a more conducive regulatory environment.

Streamlining Cryptocurrency Regulations for Innovation

To make it easier for emerging Web3 companies to navigate existing legal frameworks and contribute to the UK’s digital economy growth, the government must streamline cryptocurrency regulations and adopt forward-looking approaches. By making the regulatory landscape clear and straightforward, the UK can create an environment that fosters innovation, growth, and competitiveness in the global fintech industry.

The Policy Exchange report also recommends not weakening self-hosted wallets or treating proof-of-stake (PoS) services as financial services. This approach aims to protect the fundamental principles of decentralization and user autonomy while strongly emphasizing security and regulatory compliance. By doing so, the UK can nurture an environment that encourages innovation and the continued growth of blockchain technology.

Despite recent strict measures by UK authorities, such as His Majesty’s Treasury and the FCA, toward the digital assets sector, the proposed changes in the Policy Exchange report strive to make the UK a more attractive location for Web3 enterprises. By adopting these suggestions, the UK can demonstrate its commitment to fostering innovation in the rapidly evolving blockchain and cryptocurrency industries while ensuring a robust and transparent regulatory environment.

The ongoing uncertainty surrounding cryptocurrency regulations in various countries has prompted Web3 companies to explore alternative jurisdictions with more precise legal frameworks. As the United States grapples with regulatory ambiguity, the United Kingdom can position itself as a hub for Web3 innovation by simplifying and streamlining its cryptocurrency regulations.

Featured Image Credit: Photo by Jonathan Borba; Pexels; Thank you!

Deanna Ritchie

Managing Editor at ReadWrite

Deanna is the Managing Editor at ReadWrite. Previously she worked as the Editor in Chief for Startup Grind and has over 20+ years of experience in content management and content development.

Continue Reading

Copyright © 2021 Seminole Press.