Connect with us

Tech

Mars’s lost water may be buried beneath the planet’s crust

Published

on

Mars’s lost water may be buried beneath the planet's crust


Current estimates suggest Mars may have had between 100 and 1,500 meters global equivalent layer (m GEL) of water on its surface. (m GEL refers to a layer of 1 meter of water that would cover an even surface of the planet—Scheller says 1,000 m GEL is equivalent to roughly half the water of the Atlantic Ocean.) Even the lower end of this estimate is still plenty of water that potential life could have used to make a home for itself. 

So learning how it disappeared is critical. If we know what happened, we could have a better understanding of what locations on Mars could have preserved evidence of any life that evolved during that time—and how current and future Mars missions could look for that evidence.

In most water loss models that assume atmospheric loss, the idea has been that UV radiation causes water high in the air to dissociate into hydrogen and oxygen. Both elements—but especially the lighter hydrogen molecules— escape the atmosphere and head into space. Scientists measure this hydrogen loss (using neutron detectors like the FREND instrument on ESA and Russia’s Trace Gas Orbiter) as a proxy for determining the rate of water loss on Mars over time. 

However, there are two problems with this theory. For one, it doesn’t explain why TGO or other missions still detect so much water in the Martian crust. Second, the rate of hydrogen loss measured so far is too small to account for how much water we think Mars originally had. “It could only really account for the lower end of what most geologists think,” says Scheller.

At the same time, we now have a better understanding of how much water is buried within the Martian crust. Much of this is thanks in great part to rover missions like Curiosity that have studied Martian rocks directly, as well as lab analysis of meteorites from Mars that have landed on Earth. And all of that data has slowly led scientists to take more seriously the idea that the crust played a more significant part in the loss of water on Mars. 

Now Scheller and her colleagues have come up with a new model that uses current data to examine whether the water could have gone underground instead.

This water would not have been sucked down into huge subterranean oceans. Instead, water molecules became incorporated into mineral structures like clays as a result of processes like weathering. The same happens here on Earth. 

This process could account for anywhere between 30% and 99% of the total water loss in the planet’s first 1 to 2 billion years, according to the model. Atmospheric loss could make up the rest.

“It’s an extremely intriguing model,” says Joe Levy, a geologist at Colgate University, who wasn’t involved with the study. “Hydrated minerals and vein-forming minerals are almost everywhere we look on Mars. Runaway chemical weathering is a really provocative hypothesis to explain what happened to Mars’s water.”

A range of 30% to 99% is, of course, huge. That’s because we simply don’t know enough about the water content in the crust (least of all on a global scale), or what the ancient atmosphere of Mars looked like and to what extent it encouraged or limited atmospheric water loss. The model also attempts to take into account how geological activity in the ancient past (such as volcanism) could have affected these water loss mechanisms.

The model gives us new clues when it comes to Martian habitability. “The findings don’t just answer how Mars might have lost its water, but also when it lost its water,” says Scheller. The authors are certain the hydrated minerals in the crust are over 3 billion years old, which means Mars was potentially most habitable before that. Any search for evidence of ancient life would be best geared toward rocks that have been preserved from this earlier period.

Scheller suggests that both the Curiosity and Perseverance rovers may be able to look for samples within this time range. Perseverance in particular, whose mission is mainly dedicated to looking for evidence of Martian life, will explore a former lake bed that’s 3.8 billion years old. “It will be right there to investigate what might have been the mechanisms that caused water sequestration in these minerals in the crust,” says Scheller. Even if it cannot do the job on its own, it will capture samples that scientists could study for themselves in the lab. 

Earth and Mars started out as very similar wet worlds but ended up taking drastically different paths. The loss of water to hydrated minerals in the crust isn’t unique to Mars; this happens on Earth all the time. But Earth benefits from the fact that its tectonic plates actively recycle its crustal rocks in a process that would release this water. Plus, it retained a thick atmosphere that kept the planet at the perfect temperature for life to evolve and thrive. Mars has no tectonic plates, and it hemorrhaged its atmosphere once its magnetic field shut down 4 billion years ago. 

“Ultimately, this is the thing to keep in mind about habitability on terrestrial planets,” says Scheller. “It’s very fragile.”

Tech

The hunter-gatherer groups at the heart of a microbiome gold rush

Published

on

The hunter-gatherer groups at the heart of a microbiome gold rush


The first step to finding out is to catalogue what microbes we might have lost. To get as close to ancient microbiomes as possible, microbiologists have begun studying multiple Indigenous groups. Two have received the most attention: the Yanomami of the Amazon rainforest and the Hadza, in northern Tanzania. 

Researchers have made some startling discoveries already. A study by Sonnenburg and his colleagues, published in July, found that the gut microbiomes of the Hadza appear to include bugs that aren’t seen elsewhere—around 20% of the microbe genomes identified had not been recorded in a global catalogue of over 200,000 such genomes. The researchers found 8.4 million protein families in the guts of the 167 Hadza people they studied. Over half of them had not previously been identified in the human gut.

Plenty of other studies published in the last decade or so have helped build a picture of how the diets and lifestyles of hunter-gatherer societies influence the microbiome, and scientists have speculated on what this means for those living in more industrialized societies. But these revelations have come at a price.

A changing way of life

The Hadza people hunt wild animals and forage for fruit and honey. “We still live the ancient way of life, with arrows and old knives,” says Mangola, who works with the Olanakwe Community Fund to support education and economic projects for the Hadza. Hunters seek out food in the bush, which might include baboons, vervet monkeys, guinea fowl, kudu, porcupines, or dik-dik. Gatherers collect fruits, vegetables, and honey.

Mangola, who has met with multiple scientists over the years and participated in many research projects, has witnessed firsthand the impact of such research on his community. Much of it has been positive. But not all researchers act thoughtfully and ethically, he says, and some have exploited or harmed the community.

One enduring problem, says Mangola, is that scientists have tended to come and study the Hadza without properly explaining their research or their results. They arrive from Europe or the US, accompanied by guides, and collect feces, blood, hair, and other biological samples. Often, the people giving up these samples don’t know what they will be used for, says Mangola. Scientists get their results and publish them without returning to share them. “You tell the world [what you’ve discovered]—why can’t you come back to Tanzania to tell the Hadza?” asks Mangola. “It would bring meaning and excitement to the community,” he says.

Some scientists have talked about the Hadza as if they were living fossils, says Alyssa Crittenden, a nutritional anthropologist and biologist at the University of Nevada in Las Vegas, who has been studying and working with the Hadza for the last two decades.

The Hadza have been described as being “locked in time,” she adds, but characterizations like that don’t reflect reality. She has made many trips to Tanzania and seen for herself how life has changed. Tourists flock to the region. Roads have been built. Charities have helped the Hadza secure land rights. Mangola went abroad for his education: he has a law degree and a master’s from the Indigenous Peoples Law and Policy program at the University of Arizona.

Continue Reading

Tech

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan

Published

on

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan


Over the last couple of decades, scientists have come to realize just how important the microbes that crawl all over us are to our health. But some believe our microbiomes are in crisis—casualties of an increasingly sanitized way of life. Disturbances in the collections of microbes we host have been associated with a whole host of diseases, ranging from arthritis to Alzheimer’s.

Some might not be completely gone, though. Scientists believe many might still be hiding inside the intestines of people who don’t live in the polluted, processed environment that most of the rest of us share. They’ve been studying the feces of people like the Yanomami, an Indigenous group in the Amazon, who appear to still have some of the microbes that other people have lost. 

But there is a major catch: we don’t know whether those in hunter-gatherer societies really do have “healthier” microbiomes—and if they do, whether the benefits could be shared with others. At the same time, members of the communities being studied are concerned about the risk of what’s called biopiracy—taking natural resources from poorer countries for the benefit of wealthier ones. Read the full story.

—Jessica Hamzelou

Eric Schmidt has a 6-point plan for fighting election misinformation

—by Eric Schmidt, formerly the CEO of Google, and current cofounder of philanthropic initiative Schmidt Futures

The coming year will be one of seismic political shifts. Over 4 billion people will head to the polls in countries including the United States, Taiwan, India, and Indonesia, making 2024 the biggest election year in history.

Continue Reading

Tech

Navigating a shifting customer-engagement landscape with generative AI

Published

on

Navigating a shifting customer-engagement landscape with generative AI


A strategic imperative

Generative AI’s ability to harness customer data in a highly sophisticated manner means enterprises are accelerating plans to invest in and leverage the technology’s capabilities. In a study titled “The Future of Enterprise Data & AI,” Corinium Intelligence and WNS Triange surveyed 100 global C-suite leaders and decision-makers specializing in AI, analytics, and data. Seventy-six percent of the respondents said that their organizations are already using or planning to use generative AI.

According to McKinsey, while generative AI will affect most business functions, “four of them will likely account for 75% of the total annual value it can deliver.” Among these are marketing and sales and customer operations. Yet, despite the technology’s benefits, many leaders are unsure about the right approach to take and mindful of the risks associated with large investments.

Mapping out a generative AI pathway

One of the first challenges organizations need to overcome is senior leadership alignment. “You need the necessary strategy; you need the ability to have the necessary buy-in of people,” says Ayer. “You need to make sure that you’ve got the right use case and business case for each one of them.” In other words, a clearly defined roadmap and precise business objectives are as crucial as understanding whether a process is amenable to the use of generative AI.

The implementation of a generative AI strategy can take time. According to Ayer, business leaders should maintain a realistic perspective on the duration required for formulating a strategy, conduct necessary training across various teams and functions, and identify the areas of value addition. And for any generative AI deployment to work seamlessly, the right data ecosystems must be in place.

Ayer cites WNS Triange’s collaboration with an insurer to create a claims process by leveraging generative AI. Thanks to the new technology, the insurer can immediately assess the severity of a vehicle’s damage from an accident and make a claims recommendation based on the unstructured data provided by the client. “Because this can be immediately assessed by a surveyor and they can reach a recommendation quickly, this instantly improves the insurer’s ability to satisfy their policyholders and reduce the claims processing time,” Ayer explains.

All that, however, would not be possible without data on past claims history, repair costs, transaction data, and other necessary data sets to extract clear value from generative AI analysis. “Be very clear about data sufficiency. Don’t jump into a program where eventually you realize you don’t have the necessary data,” Ayer says.

The benefits of third-party experience

Enterprises are increasingly aware that they must embrace generative AI, but knowing where to begin is another thing. “You start off wanting to make sure you don’t repeat mistakes other people have made,” says Ayer. An external provider can help organizations avoid those mistakes and leverage best practices and frameworks for testing and defining explainability and benchmarks for return on investment (ROI).

Using pre-built solutions by external partners can expedite time to market and increase a generative AI program’s value. These solutions can harness pre-built industry-specific generative AI platforms to accelerate deployment. “Generative AI programs can be extremely complicated,” Ayer points out. “There are a lot of infrastructure requirements, touch points with customers, and internal regulations. Organizations will also have to consider using pre-built solutions to accelerate speed to value. Third-party service providers bring the expertise of having an integrated approach to all these elements.”

Continue Reading

Copyright © 2021 Seminole Press.