It’s honestly a bit hard to understand why NASA has not been more bullish about going to back to Venus in such a long time. It’s true that Venus has always been a tough bugger to explore because of its hostile environment. The surface boasts temperatures of up to 471 °C (hot enough to melt lead) and ambient pressures 89 times those on Earth. The atmosphere is 96% carbon dioxide. And the planet is covered in thick clouds of sulfuric acid. When the Soviet Union landed the Venera 13 probe on the planet in 1982, it lasted 127 minutes before it was destroyed.
And yet, we know that conditions there weren’t always so harsh! Venus and Earth are known to have started as similar worlds with similar masses, and both reside in the habitable zone of the sun (the region where it’s possible for liquid water to exist on a planet’s surface). But only Earth became habitable, while Venus turned into a hellscape. Scientists want to know why. These new missions, says Byrne, “will help us fundamentally answer the question why is our sibling planet not our twin?”
In just the last year, another huge development has encouraged NASA to take Venus exploration more seriously: the prospect of finding life. In September 2020, scientists announced that they had potentially discovered phosphine gas—which is known to be produced by biological life—in Venus’s atmosphere. Those findings came under enormous scrutiny in the ensuing months, and now it’s not quite clear whether the phosphine readings were real. But all the excitement fostered discussion to the effect that finding extraterrestrial life was perhaps possible on Venus. This tantalizing new prospect put Venus at the forefront of the public’s mind (and possibly the minds of legislators who approve NASA’s budget).
The selection of both new missions “is a very clear statement from NASA to the Venus community to say, ‘We see you, we know you’ve been neglected, and we’re going to make that right,’” says Stephen Kane, an astronomer at the University of California, Riverside. “It’s an incredible moment.”
DAVINCI+ is short for Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging Plus. It’s a spacecraft that will plunge into the dense, hot atmosphere of Venus and parachute down to the surface. On its 63-minute descent, it will use multiple spectrometers to study the atmosphere’s chemistry and composition. It will also image the Venusian landscape to better understand its crust and terrain (and if successful, it would be the first probe to photograph the planet during descent).
VERITAS, short for Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy, is an orbiter designed to carry out other research from a safer distance. It would use radar and near-infrared spectroscopy to peer below the planet’s thick clouds and observe the geology and topography of its surface.
The technology would likely be used first on infants born at 22 or 23 weeks who don’t have many other options. “You don’t want to put an infant on this device who would otherwise do well with conventional therapy,” Mychaliska says. At 22 weeks gestation, babies are tiny, often weighing less than a pound. And their lungs are still developing. When researchers looked at babies born between 2013 and 2018, survival among those who were resuscitated at 22 weeks was 30%. That number rose to nearly 56% at 23 weeks. And babies born at that stage who do survive have an increased risk of neurodevelopmental problems, cerebral palsy, mobility problems, hearing impairments, and other disabilities.
Selecting the right participants will be tricky. Some experts argue that gestational age shouldn’t be the only criteria. One complicating factor is that prognosis varies widely from center to center, and it’s improving as hospitals learn how best to treat these preemies. At the University of Iowa Stead Family Children’s Hospital, for example, survival rates are much higher than average: 64% for babies born at 22 weeks. They’ve even managed to keep a handful of infants born at 21 weeks alive. “These babies are not a hopeless case. They very much can survive. They very much can thrive if you are managing them appropriately,” says Brady Thomas, a neonatologist at Stead. “Are you really going to make that much of a bigger impact by adding in this technology, and what risks might exist to those patients as you’re starting to trial it?”
Prognosis also varies widely from baby to baby depending on a variety of factors. “The girls do better than the boys. The bigger ones do better than the smaller ones,” says Mark Mercurio, a neonatologist and pediatric bioethicist at the Yale School of Medicine. So “how bad does the prognosis with current therapy need to be to justify use of an artificial womb?” That’s a question Mercurio would like to see answered.
What are the risks?
One ever-present concern in the tiniest babies is brain bleeds. “That’s due to a number of factors—a combination of their brain immaturity, and in part associated with the treatment that we provide,” Mychaliska says. Babies in an artificial womb would need to be on a blood thinner to prevent clots from forming where the tubes enter the body. “I believe that places a premature infant at very high risk for brain bleeding,” he says.
And it’s not just about the baby. To be eligible for EXTEND, infants must be delivered via cesarean section, which puts the pregnant person at higher risk for infection and bleeding. Delivery via a C-section can also have an impact on future pregnancies.
So if it works, could babies be grown entirely outside the womb?
Not anytime soon. Maybe not ever. In a paper published in 2022, Flake and his colleagues called this scenario “a technically and developmentally naive, yet sensationally speculative, pipe dream.” The problem is twofold. First, fetal development is a carefully choreographed process that relies on chemical communication between the pregnant parent’s body and the fetus. Even if researchers understood all the factors that contribute to fetal development—and they don’t—there’s no guarantee they could recreate those conditions.
The second issue is size. The artificial womb systems being developed require doctors to insert a small tube into the infant’s umbilical cord to deliver oxygenated blood. The smaller the umbilical cord, the more difficult this becomes.
What are the ethical concerns?
In the near term, there are concerns about how to ensure that researchers are obtaining proper informed consent from parents who may be desperate to save their babies. “This is an issue that comes up with lots of last-chance therapies,” says Vardit Ravitsky, a bioethicist and president of the Hastings Center, a bioethics research institute.
Last week, Elon Musk made the bold assertion that sticking electrodes in people’s heads is going to lead to a huge increase in the rate of data transfer out of, and into, human brains.
The occasion of Musk’s post was the announcement by Neuralink, his brain-computer interface company, that it was officially seeking the first volunteer to receive an implant that contains more than twice the number of electrodes than previous versions to collect more data from more nerve cells.
The entrepreneur mentioned a long-term goal of vastly increasing “bandwidth” between people, or people and machines, by a factor of 1,000 or more. But what does he mean, and is it even possible? Read the full story.
—Antonio Regalado
This story is from The Checkup, MIT Technology Review’s weekly biotech newsletter. Sign up to receive it in your inbox every Thursday.
Everything you need to know about artificial wombs
Earlier this month, US Food and Drug Administration advisors met to discuss how to move research on artificial wombs from animals into humans.
These medical devices are designed to give extremely premature infants a bit more time to develop in a womb-like environment before entering the outside world. They have been tested with hundreds of lambs (and some piglets), but animal models can’t fully predict how the technology will work for humans.
The reason we can’t just wish away or “fix” complexity is that every solution—whether it’s a technology or methodology—redistributes complexity in some way. Solutions reorganize problems. When microservices emerged (a software architecture approach where an application or system is composed of many smaller parts), they seemingly solved many of the maintenance and development challenges posed by monolithic architectures (where the application is one single interlocking system). However, in doing so microservices placed new demands on engineering teams; they require greater maturity in terms of practices and processes. This is one of the reasons why we cautioned people against what we call “microservice envy” in a 2018 edition of the Technology Radar, with CTO Rebecca Parsons writing that microservices would never be recommended for adoption on Technology Radar because “not all organizations are microservices-ready.” We noticed there was a tendency to look to adopt microservices simply because it was fashionable.
This doesn’t mean the solution is poor or defective. It’s more that we need to recognize the solution is a tradeoff. At Thoughtworks, we’re fond of saying “it depends” when people ask questions about the value of a certain technology or approach. It’s about how it fits with your organization’s needs and, of course, your ability to manage its particular demands. This is an example of essential complexity in tech—it’s something that can’t be removed and which will persist however much you want to get to a level of simplicity you find comfortable.
In terms of microservices, we’ve noticed increasing caution about rushing to embrace this particular architectural approach. Some of our colleagues even suggested the term “monolith revivalists” to describe those turning away from microservices back to monolithic software architecture. While it’s unlikely that the software world is going to make a full return to monoliths, frameworks like Spring Modulith—a framework that helps developers structure code in such a way that it becomes easier to break apart a monolith into smaller microservices when needed—suggest that practitioners are becoming more keenly aware of managing the tradeoffs of different approaches to building and maintaining software.
Supporting practitioners with concepts and tools
Because technical solutions have a habit of reorganizing complexity, we need to carefully attend to how this complexity is managed. Failing to do so can have serious implications for the productivity and effectiveness of engineering teams. At Thoughtworks we have a number of concepts and approaches that we use to manage complexity. Sensible defaults, for instance, are starting points for a project or piece of work. They’re not things that we need to simply embrace as a rule, but instead practices and tools that we collectively recognize are effective for most projects. They give individuals and teams a baseline to make judgements about what might be done differently.
One of the benefits of sensible defaults is that they can guard you against the allure of novelty and hype. As interesting or exciting as a new technology might be, sensible defaults can anchor you in what matters to you. This isn’t to say that new technologies like generative AI shouldn’t be treated with enthusiasm and excitement—some of our teams have been experimenting with these tools and seen impressive results—but instead that adopting new tools needs to be done in a way that properly integrates with the way you work and what you want to achieve. Indeed, there are a wealth of approaches to GenAI, from high profile tools like ChatGPT to self-hosted LLMs. Using GenAI effectively is as much a question of knowing the right way to implement for you and your team as it is about technical expertise.
Interestingly, the tools that can help us manage complexity aren’t necessarily new. One thing that came up in the latest edition of Technology Radar was something called risk-based failure modeling, a process used to understand the impact, likelihood and ability of detecting the various ways that a system can fail. This has origins in failure modes and effects analysis (FMEA), a practice that dates back to the period following World War II, used in complex engineering projects in fields such as aerospace. This signals that there are some challenges that endure; while new solutions will always emerge to combat them, we should also be comfortable looking to the past for tools and techniques.
Learning to live with complexity
McKinsey’s argument that the productivity of development teams can be successfully measured caused a stir across the software engineering landscape. While having the right metrics in place is certainly important, prioritizing productivity in our thinking can cause more problems than it solves when it comes to complex systems and an ever-changing landscape of solutions. Technology Radar called this out with an edition with the theme, “How productive is measuring productivity?”This highlighted the importance of focusing on developer experience with the help of tools like DX DevEx 360.
Focusing on productivity in the way McKinsey suggests can cause us to mistakenly see coding as the “real” work of software engineering, overlooking things like architectural decisions, tests, security analysis, and performance monitoring. This is risky—organizations that adopt such a view will struggle to see tangible benefits from their digital projects. This is why the key challenge in software today is embracing complexity; not treating it as something to be minimized at all costs but a challenge that requires thoughtfulness in processes, practices, and governance. The key question is whether the industry realizes this.
This content was produced by Thoughtworks. It was not written by MIT Technology Review’s editorial staff.