Connect with us

Tech

Product design gets an AI makeover

Published

on

Product design gets an AI makeover


It’s a tall order, but one that Zapf says artificial intelligence (AI) technology can support by capturing the right data and guiding engineers through product design and development.

No wonder a November 2020 McKinsey survey reveals that more than half of organizations have adopted AI in at least one function, and 22% of respondents report at least 5% of their companywide earnings are attributable to AI. And in manufacturing, 71% of respondents have seen a 5% or more increase in revenue with AI adoption.

But that wasn’t always the case. Once “rarely used in product development,” AI has experienced an evolution over the past few years, Zapf says. Today, tech giants known for their innovations in AI, such as Google, IBM, and Amazon, “have set new standards for the use of AI in other processes,” such as engineering.

“AI is a promising and exploratory area that can significantly improve user experience for designing engineers, as well as gather relevant data in the development process for specific applications,” says Katrien Wyckaert, director of industry solutions for Siemens Industry Software.

The result is a growing appreciation for a technology that promises to simplify complex systems, get products to market faster, and drive product innovation.

Simplifying complex systems

A perfect example of AI’s power to overhaul product development is Renault. In response to increasing consumer demand, the French automaker is equipping a growing number of new vehicle models with an automated manual transmission (AMT)—a system that behaves like an automatic transmission but allows drivers to shift gears electronically using a push-button command.

AMTs are popular among consumers, but designing them can present formidable challenges. That’s because an AMT’s performance depends on the operation of three distinct subsystems: an electro-mechanical actuator that shifts the gears, electronic sensors that monitor vehicle status, and software embedded in the transmission control unit, which controls the engine. Because of this complexity, it can take up to a year of extensive trial and error to define the system’s functional requirements, design the actuator mechanics, develop the necessary software, and validate the overall system.

In an effort to streamline its AMT development process, Renault turned to Simcenter Amesim software from Siemens Digital Industries Software. The simulation technology relies on artificial neural networks, AI “learning” systems loosely modeled on the human brain. Engineers simply drag, drop, and connect icons to graphically create a model. When displayed on a screen as a sketch, the model illustrates the relationship between all the various elements of an AMT system. In turn, engineers can predict the behavior and performance of the AMT and make any necessary refinements early in the development cycle, avoiding late-stage problems and delays. In fact, by using a virtual engine and transmissions as stand-ins while developing hardware, Renault has managed to cut its AMT development time almost in half.

Speed without sacrificing quality

So, too, are emerging environmental standards prompting Renault to rely more heavily on AI. To comply with emerging carbon dioxide emissions standards, Renault has been working on the design and development of hybrid vehicles. But hybrid engines are far more complex to develop than those found in vehicles with a single energy source, such as a conventional car. That’s because hybrid engines require engineers to perform complex feats like balancing the power required from multiple energy sources, choosing from a multitude of architectures, and examining the impact of transmissions and cooling systems on a vehicle’s energy performance.

“To meet new environmental standards for a hybrid engine, we must completely rethink the architecture of gasoline engines,” says Vincent Talon, head of simulation at Renault. The problem, he adds, is that carefully examining “the dozens of different actuators that can influence the final results of fuel consumption and pollutant emissions” is a lengthy and complex process, made by more difficult by rigid timelines.

“Today, we clearly don’t have the time to painstakingly evaluate various hybrid powertrain architectures,” says Talon. “Rather, we needed to use an advanced methodology to manage this new complexity.”

For more on AI in industrial applications, visit www.siemens.com/artificialintelligence.

Download the full report.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Tech

The Download: Introducing our TR35 list, and the death of the smart city

Published

on

JA22 cover


Spoiler alert: our annual Innovators Under 35 list isn’t actually about what a small group of smart young people have been up to (although that’s certainly part of it.) It’s really about where the world of technology is headed next.

As you read about the problems this year’s winners have set out to solve, you’ll also glimpse the near future of AI, biotech, materials, computing, and the fight against climate change.

To connect the dots, we asked five experts—all judges or former winners—to write short essays about where they see the most promise, and the biggest potential roadblocks, in their respective fields. We hope the list inspires you and gives you a sense of what to expect in the years ahead.

Read the full list here.

The Urbanism issue

The modern city is a surveillance device. It can track your movements via your license plate, your cell phone, and your face. But go to any city or suburb in the United States and there’s a different type of monitoring happening, one powered by networks of privately owned doorbell cameras, wildlife cameras, and even garden-variety security cameras. 

The latest print issue of MIT Technology Review examines why, independently of local governments, we have built our neighborhoods into panopticons: everyone watching everything, all the time. Here is a selection of some of the new stories in the edition, guaranteed to make you wonder whether smart cities really are so smart after all:

– How groups of online neighborhood watchmen are taking the law into their own hands.

– Why Toronto wants you to forget everything you know about smart cities.

– Bike theft is a huge problem. Specialized parking pods could be the answer.

– Public transport wants to kill off cash—but it won’t be as disruptive as you think.

Continue Reading

Tech

Toronto wants to kill the smart city forever

Published

on

Toronto wants to kill the smart city forever


Most Quayside watchers have a hard time believing that covid was the real reason for ending the project. Sidewalk Labs never really painted a compelling picture of the place it hoped to build. 

Quayside 2.0

The new Waterfront Toronto project has clearly learned from the past. Renderings of the new plans for Quayside—call it Quayside 2.0—released earlier this year show trees and greenery sprouting from every possible balcony and outcropping, with nary an autonomous vehicle or drone in site. The project’s highly accomplished design team—led by Alison Brooks, a Canadian architect based in London; the renowned Ghanaian-British architect David Adjaye; Matthew Hickey, a Mohawk architect from the Six Nations First Nation; and the Danish firm Henning Larsen—all speak of this new corner of Canada’s largest city not as a techno-utopia but as a bucolic retreat. 

In every way, Quayside 2.0 promotes the notion that an urban neighborhood can be a hybrid of the natural and the manmade. The project boldly suggests that we now want our cities to be green, both metaphorically and literally—the renderings are so loaded with trees that they suggest foliage is a new form of architectural ornament. In the promotional video for the project, Adjaye, known for his design of the Smithsonian Museum of African American History, cites the “importance of human life, plant life, and the natural world.” The pendulum has swung back toward Howard’s garden city: Quayside 2022 is a conspicuous disavowal not only of the 2017 proposal but of the smart city concept itself.

To some extent, this retreat to nature reflects the changing times, as society has gone from a place of techno-optimism (think: Steve Jobs introducing the iPhone) to a place of skepticism, scarred by data collection scandals, misinformation, online harassment, and outright techno-fraud. Sure, the tech industry has made life more productive over the past two decades, but has it made it better? Sidewalk never had an answer to this. 

 “To me it’s a wonderful ending because we didn’t end up with a big mistake,” says Jennifer Keesmaat, former chief planner for Toronto, who advised the Ministry of Infrastructure on how to set this next iteration up for success. She’s enthusiastic about the rethought plan for the area: “If you look at what we’re doing now on that site, it’s classic city building with a 21st-century twist, which means it’s a carbon-neutral community. It’s a totally electrified community. It’s a community that prioritizes affordable housing, because we have an affordable-housing crisis in our city. It’s a community that has a strong emphasis on green space and urban agriculture and urban farming. Are those things that are derived from Sidewalk’s proposal? Not really.”

Continue Reading

Tech

Rewriting what we thought was possible in biotech

Published

on

Rewriting what we thought was possible in biotech


What ML and AI in biotech broadly need to engage with are the holes that are unique to the study of health. Success stories like neural nets that learned to identify dogs in images were built with the help of high-quality image labeling that people were in a good position to provide. Even attempts to generate or translate human language are easily verified and audited by experts who speak a particular language. 

Instead, much of biology, health, and medicine is very much in the stage of fundamental discovery. How do neurodegenerative diseases work? What environmental factors really matter? What role does nutrition play in overall human health? We don’t know yet. In health and biotech, machine learning is taking on a different, more challenging, task—one that will require less engineering and more science.

Marzyeh Ghassemi is an assistant professor at MIT and a faculty member at the Vector Institute (and a 35 Innovators honoree in 2018).

Continue Reading

Copyright © 2021 Seminole Press.