Connect with us

Tech

Scientists plan to drop limits on how far human embryos are grown in the lab

Published

on

Scientists plan to drop limits on how far human embryos are grown in the lab


For the last 40 years, this voluntary guideline has served as an important stop sign for embryonic research. It has provided a clear signal to the public that scientists wouldn’t grow babies in labs. To researchers, it gave clarity about what research they could pursue.

Now, however, a key scientific body is ready to do away with the 14-day limit. The action would come at a time when scientists are making remarkable progress in growing embryonic cells and watching them develop. Researchers, for example, can now create embryo-like structures starting even from stem cells, and some hope to follow these synthetic embryo models well past the old two-week line.

By allowing both normal and artificial embryos to continue developing after two weeks, the end of the self-imposed limit could unleash impressive but ethically charged new experiments on extending human development outside the womb.

The International Society for Stem Cell Research has prepared draft recommendations to move such research out of a category of “prohibited” scientific activities and into a class of research that can be permitted after ethics review and depending on national regulations, according to several people familiar with its thinking.

A spokesperson for the ISSCR, an influential professional society with 4,000 members, declined to comment on the change, saying its new guidelines would be released this spring.

Artificial embryo

Because embryo research doesn’t receive federal funding in the US, and laws differ widely around the world, the ISSCR has taken on outsize importance as the field’s de facto ethics regulator. The society’s rules are relied on by universities and by scientific journals to determine what kinds of research they can publish.

The existing ISSCR guidelines, issued in 2016, are being updated because of an onrush of new, boundary-busting research. For instance, some labs are attempting to create human-animal chimeras through experiments including mixing human cells into monkey embryos. Researchers are also continuing to explore genetic modification of human embryos, using gene-editing tools like CRISPR.

Many labs are also working on realistic artificial models of human embryos constructed from stem cells. For instance, last week, Zernicka-Goetz posted a preprint describing how her lab coaxed stem cells to self-assemble into a version of a human blastocyst, as a week-old embryo is known.

Though scientists are keen to explore whether such lab-created mimicry can be pushed further, the 14-day rule stands in the way. In many cases, the embryo models must also be destroyed before two weeks elapse.

The 14-day limit arose after the birth of the first test-tube babies in the 1970s. “It was ‘Oh, we can create human embryos outside the body—we need rules,” says Josephine Johnston, a scholar with the Hastings Center, a nonprofit bioethics organization. “It was a political decision to show the public there is a framework for this research, that we aren’t growing babies in labs.”

The rule stood unchallenged for many years. That was in part because scientist couldn’t grow embryos more than four or five days anyway, which was sufficient for in vitro fertilization.

Tetsuya Ishii, a bioethics and legal researcher at Hokkaido University, says some countries, including Japan, have put the 14-day limit into law. Others, like Germany, ban embryo research altogether. That means a guideline change could do most to open up new fields of competition between countries without federal restrictions, particularly among scientists in the US and China.

Scientists are motivated to grow embryos longer in order to study—and potentially manipulate—the development process. But such techniques raise the possibility of someday gestating animals outside the womb until birth, a concept called ectogenesis.

According to Ishii, new experiments “might ignite abortion debates,” especially if the researchers develop human embryos to the point where they take on recognizable characteristics like a head, beating heart cells, or the beginning of limbs.

During the Trump administration, embryologists endeavored to keep a low profile for the startling technical advances in their labs. Fears of a presidential tweet or government action to impede research helped keep discussion of changing the 14-day rule in the background. For instance, the ISSCR guidelines were complete in December, according to one person, but they still have not been published.

Tech

The hunter-gatherer groups at the heart of a microbiome gold rush

Published

on

The hunter-gatherer groups at the heart of a microbiome gold rush


The first step to finding out is to catalogue what microbes we might have lost. To get as close to ancient microbiomes as possible, microbiologists have begun studying multiple Indigenous groups. Two have received the most attention: the Yanomami of the Amazon rainforest and the Hadza, in northern Tanzania. 

Researchers have made some startling discoveries already. A study by Sonnenburg and his colleagues, published in July, found that the gut microbiomes of the Hadza appear to include bugs that aren’t seen elsewhere—around 20% of the microbe genomes identified had not been recorded in a global catalogue of over 200,000 such genomes. The researchers found 8.4 million protein families in the guts of the 167 Hadza people they studied. Over half of them had not previously been identified in the human gut.

Plenty of other studies published in the last decade or so have helped build a picture of how the diets and lifestyles of hunter-gatherer societies influence the microbiome, and scientists have speculated on what this means for those living in more industrialized societies. But these revelations have come at a price.

A changing way of life

The Hadza people hunt wild animals and forage for fruit and honey. “We still live the ancient way of life, with arrows and old knives,” says Mangola, who works with the Olanakwe Community Fund to support education and economic projects for the Hadza. Hunters seek out food in the bush, which might include baboons, vervet monkeys, guinea fowl, kudu, porcupines, or dik-dik. Gatherers collect fruits, vegetables, and honey.

Mangola, who has met with multiple scientists over the years and participated in many research projects, has witnessed firsthand the impact of such research on his community. Much of it has been positive. But not all researchers act thoughtfully and ethically, he says, and some have exploited or harmed the community.

One enduring problem, says Mangola, is that scientists have tended to come and study the Hadza without properly explaining their research or their results. They arrive from Europe or the US, accompanied by guides, and collect feces, blood, hair, and other biological samples. Often, the people giving up these samples don’t know what they will be used for, says Mangola. Scientists get their results and publish them without returning to share them. “You tell the world [what you’ve discovered]—why can’t you come back to Tanzania to tell the Hadza?” asks Mangola. “It would bring meaning and excitement to the community,” he says.

Some scientists have talked about the Hadza as if they were living fossils, says Alyssa Crittenden, a nutritional anthropologist and biologist at the University of Nevada in Las Vegas, who has been studying and working with the Hadza for the last two decades.

The Hadza have been described as being “locked in time,” she adds, but characterizations like that don’t reflect reality. She has made many trips to Tanzania and seen for herself how life has changed. Tourists flock to the region. Roads have been built. Charities have helped the Hadza secure land rights. Mangola went abroad for his education: he has a law degree and a master’s from the Indigenous Peoples Law and Policy program at the University of Arizona.

Continue Reading

Tech

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan

Published

on

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan


Over the last couple of decades, scientists have come to realize just how important the microbes that crawl all over us are to our health. But some believe our microbiomes are in crisis—casualties of an increasingly sanitized way of life. Disturbances in the collections of microbes we host have been associated with a whole host of diseases, ranging from arthritis to Alzheimer’s.

Some might not be completely gone, though. Scientists believe many might still be hiding inside the intestines of people who don’t live in the polluted, processed environment that most of the rest of us share. They’ve been studying the feces of people like the Yanomami, an Indigenous group in the Amazon, who appear to still have some of the microbes that other people have lost. 

But there is a major catch: we don’t know whether those in hunter-gatherer societies really do have “healthier” microbiomes—and if they do, whether the benefits could be shared with others. At the same time, members of the communities being studied are concerned about the risk of what’s called biopiracy—taking natural resources from poorer countries for the benefit of wealthier ones. Read the full story.

—Jessica Hamzelou

Eric Schmidt has a 6-point plan for fighting election misinformation

—by Eric Schmidt, formerly the CEO of Google, and current cofounder of philanthropic initiative Schmidt Futures

The coming year will be one of seismic political shifts. Over 4 billion people will head to the polls in countries including the United States, Taiwan, India, and Indonesia, making 2024 the biggest election year in history.

Continue Reading

Tech

Navigating a shifting customer-engagement landscape with generative AI

Published

on

Navigating a shifting customer-engagement landscape with generative AI


A strategic imperative

Generative AI’s ability to harness customer data in a highly sophisticated manner means enterprises are accelerating plans to invest in and leverage the technology’s capabilities. In a study titled “The Future of Enterprise Data & AI,” Corinium Intelligence and WNS Triange surveyed 100 global C-suite leaders and decision-makers specializing in AI, analytics, and data. Seventy-six percent of the respondents said that their organizations are already using or planning to use generative AI.

According to McKinsey, while generative AI will affect most business functions, “four of them will likely account for 75% of the total annual value it can deliver.” Among these are marketing and sales and customer operations. Yet, despite the technology’s benefits, many leaders are unsure about the right approach to take and mindful of the risks associated with large investments.

Mapping out a generative AI pathway

One of the first challenges organizations need to overcome is senior leadership alignment. “You need the necessary strategy; you need the ability to have the necessary buy-in of people,” says Ayer. “You need to make sure that you’ve got the right use case and business case for each one of them.” In other words, a clearly defined roadmap and precise business objectives are as crucial as understanding whether a process is amenable to the use of generative AI.

The implementation of a generative AI strategy can take time. According to Ayer, business leaders should maintain a realistic perspective on the duration required for formulating a strategy, conduct necessary training across various teams and functions, and identify the areas of value addition. And for any generative AI deployment to work seamlessly, the right data ecosystems must be in place.

Ayer cites WNS Triange’s collaboration with an insurer to create a claims process by leveraging generative AI. Thanks to the new technology, the insurer can immediately assess the severity of a vehicle’s damage from an accident and make a claims recommendation based on the unstructured data provided by the client. “Because this can be immediately assessed by a surveyor and they can reach a recommendation quickly, this instantly improves the insurer’s ability to satisfy their policyholders and reduce the claims processing time,” Ayer explains.

All that, however, would not be possible without data on past claims history, repair costs, transaction data, and other necessary data sets to extract clear value from generative AI analysis. “Be very clear about data sufficiency. Don’t jump into a program where eventually you realize you don’t have the necessary data,” Ayer says.

The benefits of third-party experience

Enterprises are increasingly aware that they must embrace generative AI, but knowing where to begin is another thing. “You start off wanting to make sure you don’t repeat mistakes other people have made,” says Ayer. An external provider can help organizations avoid those mistakes and leverage best practices and frameworks for testing and defining explainability and benchmarks for return on investment (ROI).

Using pre-built solutions by external partners can expedite time to market and increase a generative AI program’s value. These solutions can harness pre-built industry-specific generative AI platforms to accelerate deployment. “Generative AI programs can be extremely complicated,” Ayer points out. “There are a lot of infrastructure requirements, touch points with customers, and internal regulations. Organizations will also have to consider using pre-built solutions to accelerate speed to value. Third-party service providers bring the expertise of having an integrated approach to all these elements.”

Continue Reading

Copyright © 2021 Seminole Press.