Connect with us

Tech

Solar panels are a pain to recycle. These companies are trying to fix that.

Published

on

Solar panels are a pain to recycle. These companies are trying to fix that.


Expanding solar-power production is key to reducing emissions worldwide. Globally, solar panels produced 720 terawatt-hours of energy in 2019, accounting for around 3% of the world’s electricity generation. And it took about 46 million metric tons of solar panels to do it.

About 8 million metric tons of decommissioned solar panels could accumulate globally by 2030. By 2050, that number could reach 80 million. Recycling these panels could provide a new source for materials that would otherwise need to be mined (potentially under unsafe or exploitative working conditions), making solar a more sustainable piece of the clean-energy puzzle.

What’s in a solar panel?

Solar panels are laid out like a sandwich with cells in the center. About 90% of commercial solar panels use silicon as the semiconductor, which converts light into electricity. Thin strips of metal, usually silver, crisscross the surface of silicon crystals in each cell and move electricity into the panel’s copper wiring.

The solar cells are encased in a protective barrier, usually a transparent plastic called EVA. Another layer of glass goes on top, and a different kind of plastic, like PET, covers the back. The whole thing is surrounded by an aluminum frame.

This layered construction protects cells from the elements while allowing sunlight through, but it can be difficult to deconstruct when the panels have reached the end of their life.

A second life

Some companies try to refurbish and reuse panels that have lost efficiency, or at least rescue some of their components. Reuse is the simplest and cheapest way to “recycle” panels—it requires the least processing and commands the highest price.

A panel might cost around $55, while a used panel might be resold for around $22. Or the used panel’s components might be sold for a total of up to $18, according to Meng Tao, an engineering professor at Arizona State University and founder of a solar-panel recycling startup called TG Companies.

Although some resellers offer used panels for sale to residential customers, they don’t offer much price savings. Panels only make up, at most, about half the cost of a residential solar array, with the other equipment and permits accounting for the rest. Given that used panels don’t generate as much electricity, the money saved by buying them might not be worth it.

Used panels that can’t be resold are destined for either the landfill or some type of recycling. In the absence of federal mandates, Washington recently passed recycling requirements for manufacturers, and other states are now considering doing the same. The EU, meanwhile, requires manufacturers to collect and recycle used solar panels and fund research on end-of-life solutions for the technology they produce.

About 8 million metric tons of decommissioned solar panels could accumulate by 2030.

Some waste facilities can recycle solar panels using mechanical methods. Most pop off the aluminum frame and grind all the glass, silicon, and other metals into a mixture called glass cullet, which can be sold for building materials or other industrial applications.

But cullet isn’t worth much—around $3 for a panel’s worth of the mixture. And it’s not clear if there will be buyers for all the cullet that would result from recycling many more solar panels, Tao says. Being able to extract pure, valuable materials might help make recycling more profitable.

In 2018 the waste management company Veolia, based near Paris, opened what it says is the first recycling line developed specifically for recycling solar panels. Located in Rousset, France, the plant also uses a mechanical recycling process, although since it’s designed for solar panels, more components are recycled separately than at facilities using general e-waste recycling equipment. But some companies are betting that other methods, like thermal and chemical processes, will be even more efficient.

Mining old panels

ROSI Solar, a French startup founded in 2017, recently announced plans to build a new recycling plant in Grenoble, France. Yun Luo, ROSI’s CEO, says the company has developed a process to extract the silver, silicon, and other high-value materials from used panels. The plant should open before the end of 2022 with a contract from Soren, a French trade association.

Soren is also working with a French logistics company called Envie 2E Aquitaine, which will try to find other uses for decommissioned solar panels. If the panels aren’t operational, the company will remove the aluminum frame and glass before passing them along to ROSI to recycle, Luo says.

ROSI focuses on recovering silver and solar-grade silicon, since these two materials make up over 60% of a panel’s cost. The company uses a proprietary chemical process on the remaining layers, focusing on removing the tiny silver threads that transmit electricity through a working solar panel.

Luo declined to go into specifics but says the company can recover nearly all the silver in a solid form, so it’s easier to separate from the other metals, like lead and tin. Luo says that the company also recovers the silicon in a pure enough form to reuse in new panels or EV batteries.

To be profitable, ROSI will need to recycle at least 2,000 to 3,000 tons of panels per year, Luo says. Soren expects to collect about 7,000 tons of panels in 2021, and that number will probably more than double by 2025.

Tech

The hunter-gatherer groups at the heart of a microbiome gold rush

Published

on

The hunter-gatherer groups at the heart of a microbiome gold rush


The first step to finding out is to catalogue what microbes we might have lost. To get as close to ancient microbiomes as possible, microbiologists have begun studying multiple Indigenous groups. Two have received the most attention: the Yanomami of the Amazon rainforest and the Hadza, in northern Tanzania. 

Researchers have made some startling discoveries already. A study by Sonnenburg and his colleagues, published in July, found that the gut microbiomes of the Hadza appear to include bugs that aren’t seen elsewhere—around 20% of the microbe genomes identified had not been recorded in a global catalogue of over 200,000 such genomes. The researchers found 8.4 million protein families in the guts of the 167 Hadza people they studied. Over half of them had not previously been identified in the human gut.

Plenty of other studies published in the last decade or so have helped build a picture of how the diets and lifestyles of hunter-gatherer societies influence the microbiome, and scientists have speculated on what this means for those living in more industrialized societies. But these revelations have come at a price.

A changing way of life

The Hadza people hunt wild animals and forage for fruit and honey. “We still live the ancient way of life, with arrows and old knives,” says Mangola, who works with the Olanakwe Community Fund to support education and economic projects for the Hadza. Hunters seek out food in the bush, which might include baboons, vervet monkeys, guinea fowl, kudu, porcupines, or dik-dik. Gatherers collect fruits, vegetables, and honey.

Mangola, who has met with multiple scientists over the years and participated in many research projects, has witnessed firsthand the impact of such research on his community. Much of it has been positive. But not all researchers act thoughtfully and ethically, he says, and some have exploited or harmed the community.

One enduring problem, says Mangola, is that scientists have tended to come and study the Hadza without properly explaining their research or their results. They arrive from Europe or the US, accompanied by guides, and collect feces, blood, hair, and other biological samples. Often, the people giving up these samples don’t know what they will be used for, says Mangola. Scientists get their results and publish them without returning to share them. “You tell the world [what you’ve discovered]—why can’t you come back to Tanzania to tell the Hadza?” asks Mangola. “It would bring meaning and excitement to the community,” he says.

Some scientists have talked about the Hadza as if they were living fossils, says Alyssa Crittenden, a nutritional anthropologist and biologist at the University of Nevada in Las Vegas, who has been studying and working with the Hadza for the last two decades.

The Hadza have been described as being “locked in time,” she adds, but characterizations like that don’t reflect reality. She has made many trips to Tanzania and seen for herself how life has changed. Tourists flock to the region. Roads have been built. Charities have helped the Hadza secure land rights. Mangola went abroad for his education: he has a law degree and a master’s from the Indigenous Peoples Law and Policy program at the University of Arizona.

Continue Reading

Tech

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan

Published

on

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan


Over the last couple of decades, scientists have come to realize just how important the microbes that crawl all over us are to our health. But some believe our microbiomes are in crisis—casualties of an increasingly sanitized way of life. Disturbances in the collections of microbes we host have been associated with a whole host of diseases, ranging from arthritis to Alzheimer’s.

Some might not be completely gone, though. Scientists believe many might still be hiding inside the intestines of people who don’t live in the polluted, processed environment that most of the rest of us share. They’ve been studying the feces of people like the Yanomami, an Indigenous group in the Amazon, who appear to still have some of the microbes that other people have lost. 

But there is a major catch: we don’t know whether those in hunter-gatherer societies really do have “healthier” microbiomes—and if they do, whether the benefits could be shared with others. At the same time, members of the communities being studied are concerned about the risk of what’s called biopiracy—taking natural resources from poorer countries for the benefit of wealthier ones. Read the full story.

—Jessica Hamzelou

Eric Schmidt has a 6-point plan for fighting election misinformation

—by Eric Schmidt, formerly the CEO of Google, and current cofounder of philanthropic initiative Schmidt Futures

The coming year will be one of seismic political shifts. Over 4 billion people will head to the polls in countries including the United States, Taiwan, India, and Indonesia, making 2024 the biggest election year in history.

Continue Reading

Tech

Navigating a shifting customer-engagement landscape with generative AI

Published

on

Navigating a shifting customer-engagement landscape with generative AI


A strategic imperative

Generative AI’s ability to harness customer data in a highly sophisticated manner means enterprises are accelerating plans to invest in and leverage the technology’s capabilities. In a study titled “The Future of Enterprise Data & AI,” Corinium Intelligence and WNS Triange surveyed 100 global C-suite leaders and decision-makers specializing in AI, analytics, and data. Seventy-six percent of the respondents said that their organizations are already using or planning to use generative AI.

According to McKinsey, while generative AI will affect most business functions, “four of them will likely account for 75% of the total annual value it can deliver.” Among these are marketing and sales and customer operations. Yet, despite the technology’s benefits, many leaders are unsure about the right approach to take and mindful of the risks associated with large investments.

Mapping out a generative AI pathway

One of the first challenges organizations need to overcome is senior leadership alignment. “You need the necessary strategy; you need the ability to have the necessary buy-in of people,” says Ayer. “You need to make sure that you’ve got the right use case and business case for each one of them.” In other words, a clearly defined roadmap and precise business objectives are as crucial as understanding whether a process is amenable to the use of generative AI.

The implementation of a generative AI strategy can take time. According to Ayer, business leaders should maintain a realistic perspective on the duration required for formulating a strategy, conduct necessary training across various teams and functions, and identify the areas of value addition. And for any generative AI deployment to work seamlessly, the right data ecosystems must be in place.

Ayer cites WNS Triange’s collaboration with an insurer to create a claims process by leveraging generative AI. Thanks to the new technology, the insurer can immediately assess the severity of a vehicle’s damage from an accident and make a claims recommendation based on the unstructured data provided by the client. “Because this can be immediately assessed by a surveyor and they can reach a recommendation quickly, this instantly improves the insurer’s ability to satisfy their policyholders and reduce the claims processing time,” Ayer explains.

All that, however, would not be possible without data on past claims history, repair costs, transaction data, and other necessary data sets to extract clear value from generative AI analysis. “Be very clear about data sufficiency. Don’t jump into a program where eventually you realize you don’t have the necessary data,” Ayer says.

The benefits of third-party experience

Enterprises are increasingly aware that they must embrace generative AI, but knowing where to begin is another thing. “You start off wanting to make sure you don’t repeat mistakes other people have made,” says Ayer. An external provider can help organizations avoid those mistakes and leverage best practices and frameworks for testing and defining explainability and benchmarks for return on investment (ROI).

Using pre-built solutions by external partners can expedite time to market and increase a generative AI program’s value. These solutions can harness pre-built industry-specific generative AI platforms to accelerate deployment. “Generative AI programs can be extremely complicated,” Ayer points out. “There are a lot of infrastructure requirements, touch points with customers, and internal regulations. Organizations will also have to consider using pre-built solutions to accelerate speed to value. Third-party service providers bring the expertise of having an integrated approach to all these elements.”

Continue Reading

Copyright © 2021 Seminole Press.