Connect with us

Tech

The coming productivity boom

Published

on

Annual Labor Productivity Growth 2001 - 2021 Q1


The last 15 years have been tough times for many Americans, but there are now encouraging signs of a turnaround.

Productivity growth, a key driver for higher living standards, averaged only 1.3% since 2006, less than half the rate of the previous decade. But on June 3, the US Bureau of Labor Statistics reported that US labor productivity increased by 5.4% in the first quarter of 2021. What’s better, there’s reason to believe that this is not just a blip, but rather a harbinger of better times ahead: a productivity surge that will match or surpass the boom times of the 1990s.  

Annual Labor Productivity Growth, 2001 – 2021 Q1

For much of the past decade, productivity growth has been sluggish, but now there are signs it’s picking up. (Source: US Bureau of Labor Statistics)

Our optimism is grounded in our research which indicates that most OECD countries are just passing the lowest point in a productivity J-curve. Driven by advances in digital technologies, such as artificial intelligence, productivity growth is now headed up.

Technology alone is rarely enough to create significant benefits.

The productivity J-curve describes the historical pattern of initially slow productivity growth after a breakthrough technology is introduced, followed years later by a sharp takeoff. Our research and that of others has found that technology alone is rarely enough to create significant benefits. Instead, technology investments must be combined with even larger investments in new business processes, skills, and other types of intangible capital before breakthroughs as diverse as the steam engine or computers ultimately boost productivity. For instance, after electricity was introduced to American factories, productivity was stagnant for more than two decades. It was only after managers reinvented their production lines using distributed machinery, a technique made possible by electricity, that productivity surged.

There are three reasons that this time around the productivity J-curve will be bigger and faster than in the past.

The first is technological: the past decade has delivered an astonishing cluster of technology breakthroughs. The most important ones are in AI: the development of machine learning algorithms combined with large decline in prices for data storage and improvements in computing power has allowed firms to address challenges from vision and speech to prediction and diagnosis. The fast-growing cloud computing market has made these innovations accessible to smaller firms.   

Tech

The Download: Introducing our TR35 list, and the death of the smart city

Published

on

JA22 cover


Spoiler alert: our annual Innovators Under 35 list isn’t actually about what a small group of smart young people have been up to (although that’s certainly part of it.) It’s really about where the world of technology is headed next.

As you read about the problems this year’s winners have set out to solve, you’ll also glimpse the near future of AI, biotech, materials, computing, and the fight against climate change.

To connect the dots, we asked five experts—all judges or former winners—to write short essays about where they see the most promise, and the biggest potential roadblocks, in their respective fields. We hope the list inspires you and gives you a sense of what to expect in the years ahead.

Read the full list here.

The Urbanism issue

The modern city is a surveillance device. It can track your movements via your license plate, your cell phone, and your face. But go to any city or suburb in the United States and there’s a different type of monitoring happening, one powered by networks of privately owned doorbell cameras, wildlife cameras, and even garden-variety security cameras. 

The latest print issue of MIT Technology Review examines why, independently of local governments, we have built our neighborhoods into panopticons: everyone watching everything, all the time. Here is a selection of some of the new stories in the edition, guaranteed to make you wonder whether smart cities really are so smart after all:

– How groups of online neighborhood watchmen are taking the law into their own hands.

– Why Toronto wants you to forget everything you know about smart cities.

– Bike theft is a huge problem. Specialized parking pods could be the answer.

– Public transport wants to kill off cash—but it won’t be as disruptive as you think.

Continue Reading

Tech

Toronto wants to kill the smart city forever

Published

on

Toronto wants to kill the smart city forever


Most Quayside watchers have a hard time believing that covid was the real reason for ending the project. Sidewalk Labs never really painted a compelling picture of the place it hoped to build. 

Quayside 2.0

The new Waterfront Toronto project has clearly learned from the past. Renderings of the new plans for Quayside—call it Quayside 2.0—released earlier this year show trees and greenery sprouting from every possible balcony and outcropping, with nary an autonomous vehicle or drone in site. The project’s highly accomplished design team—led by Alison Brooks, a Canadian architect based in London; the renowned Ghanaian-British architect David Adjaye; Matthew Hickey, a Mohawk architect from the Six Nations First Nation; and the Danish firm Henning Larsen—all speak of this new corner of Canada’s largest city not as a techno-utopia but as a bucolic retreat. 

In every way, Quayside 2.0 promotes the notion that an urban neighborhood can be a hybrid of the natural and the manmade. The project boldly suggests that we now want our cities to be green, both metaphorically and literally—the renderings are so loaded with trees that they suggest foliage is a new form of architectural ornament. In the promotional video for the project, Adjaye, known for his design of the Smithsonian Museum of African American History, cites the “importance of human life, plant life, and the natural world.” The pendulum has swung back toward Howard’s garden city: Quayside 2022 is a conspicuous disavowal not only of the 2017 proposal but of the smart city concept itself.

To some extent, this retreat to nature reflects the changing times, as society has gone from a place of techno-optimism (think: Steve Jobs introducing the iPhone) to a place of skepticism, scarred by data collection scandals, misinformation, online harassment, and outright techno-fraud. Sure, the tech industry has made life more productive over the past two decades, but has it made it better? Sidewalk never had an answer to this. 

 “To me it’s a wonderful ending because we didn’t end up with a big mistake,” says Jennifer Keesmaat, former chief planner for Toronto, who advised the Ministry of Infrastructure on how to set this next iteration up for success. She’s enthusiastic about the rethought plan for the area: “If you look at what we’re doing now on that site, it’s classic city building with a 21st-century twist, which means it’s a carbon-neutral community. It’s a totally electrified community. It’s a community that prioritizes affordable housing, because we have an affordable-housing crisis in our city. It’s a community that has a strong emphasis on green space and urban agriculture and urban farming. Are those things that are derived from Sidewalk’s proposal? Not really.”

Continue Reading

Tech

Rewriting what we thought was possible in biotech

Published

on

Rewriting what we thought was possible in biotech


What ML and AI in biotech broadly need to engage with are the holes that are unique to the study of health. Success stories like neural nets that learned to identify dogs in images were built with the help of high-quality image labeling that people were in a good position to provide. Even attempts to generate or translate human language are easily verified and audited by experts who speak a particular language. 

Instead, much of biology, health, and medicine is very much in the stage of fundamental discovery. How do neurodegenerative diseases work? What environmental factors really matter? What role does nutrition play in overall human health? We don’t know yet. In health and biotech, machine learning is taking on a different, more challenging, task—one that will require less engineering and more science.

Marzyeh Ghassemi is an assistant professor at MIT and a faculty member at the Vector Institute (and a 35 Innovators honoree in 2018).

Continue Reading

Copyright © 2021 Seminole Press.