Connect with us

Tech

The Download: experimental embryos and the US monkeypox emergency

Published

on

The Download: experimental embryos and the US monkeypox emergency


In a search for novel forms of longevity medicine, a biotech company based in Israel says it intends to create embryo-stage versions of people in order to harvest tissues for use in transplant treatments.

The company, Renewal Bio, is pursuing recent advances in stem-cell technology and artificial wombs, demonstrated by Jacob Hanna, a biologist at the Weizmann Institute of Science in Rehovot. Earlier this week, Hanna showed that starting with mouse stem cells, his lab could form highly realistic-looking mouse embryos and keep them growing in a mechanical womb for several days until they developed beating hearts, flowing blood, and cranial folds. 

It’s the first time such an advanced embryo has been mimicked without sperm, eggs, or even a uterus. Now Hanna has set his sights on extending the technology to humans—he’s already experimenting with human cells and hopes to eventually produce artificial models of human embryos. “We view the embryo as the best 3D bio printer,” he says. Read the full story.

—Antonio Regalado

Automated techniques could make it easier to develop AI

Machine-learning researchers have to make many decisions when designing new models, meaning that complex models end up being designed by human intuition, rather than systematically. A growing field called automated machine learning, or autoML, aims to eliminate that guesswork, allowing algorithms to take over the decision making, which could both simplify the process and make machine learning more accessible.

Big Tech is paying attention. Companies like Amazon and Google already offer low-code machine-learning tools that take advantage of autoML techniques, and computer scientists are excited by the notion of being able to simply specify a problem, before tasking the computer with figuring it out. But researchers have a lot of work to do before autoML can be deployed more widely. Read the full story.

Tammy Xu

The must-reads

I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.

1 The US has declared monkeypox a public health emergency
It has surpassed 7,100 cases, more than any other country. (WSJ $)
+ Many queer men have been unable to get vaccinated. (Vox)
+ Some people will be at risk of contracting both monkeypox and covid. (The Atlantic $)
+ There’s still no evidence to suggest that monkeypox has become more virulent. (Slate)
+ Everything you need to know about the monkeypox vaccines. (MIT Technology Review)

2 Alex Jones must pay $4 million to the parents of a Sandy Hook victim
The conspiracy theorist is finally facing consequences for calling the massacre a hoax. (BBC)
+ The jury could choose to award further damages, too. (Buzzfeed News

3 Elon Musk has accused Twitter of fraud 
He also claims he was “hoodwinked” into signing the purchase agreement. (Bloomberg $)
+ A tool used to assess Twitter bots reportedly flagged Musk’s own account as one. (FT $)
+ Twitter’s lawyers aren’t holding back. (The Verge)
+ Meanwhile, Musk predicts the US will weather a “mild recession” for 18 months. (Insider)

4 The UK’s cost of living crisis has birthed a wave of scams
Which feels particularly cruel, if sadly inevitable. (FT $)

5 Your brain appears to unlock new realities when you die 🧠
The new dimensions of reality some dying people experience are not the same as hallucinating. (Neo.Life)

6 We’re buying fewer video games than we used to
With less disposable income, shoppers are cutting down on non-essentials. (WP $)

7 The animals we know least about are most at risk of extinction
Many are already believed to have died out before we could discover them. (Motherboard)
+ Machine learning could help identify the species most at risk. (The Verge)
+ Understanding how species mate is crucial to ensuring their future safety. (Knowable Magazine)

8 The internet is obsessed with tracking the celebrities’ flights
Aviation enthusiasts are revealing the data that the rich and famous would rather keep secret. (The Guardian)

9 Hollywood is getting better at portraying young, online lives  
Being Extremely Online is no longer the preserve of the loner. (The Atlantic $)
+ How the next generation is reshaping political discourse. (MIT Technology Review)

10 TikTok can’t get enough of young farmers 🐄🐏
Their rural lives are striking a chord. (FT $)
+ Elsewhere on TikTok, users are paying money to wake people up. (Wired $)

Tech

Meta’s new AI can turn text prompts into videos

Published

on

Meta’s new AI can turn text prompts into videos


Although the effect is rather crude, the system offers an early glimpse of what’s coming next for generative artificial intelligence, and it is the next obvious step from the text-to-image AI systems that have caused huge excitement this year. 

Meta’s announcement of Make-A-Video, which is not yet being made available to the public, will likely prompt other AI labs to release their own versions. It also raises some big ethical questions. 

In the last month alone, AI lab OpenAI has made its latest text-to-image AI system DALL-E available to everyone, and AI startup Stability.AI launched Stable Diffusion, an open-source text-to-image system.

But text-to-video AI comes with some even greater challenges. For one, these models need a vast amount of computing power. They are an even bigger computational lift than large text-to-image AI models, which use millions of images to train, because putting together just one short video requires hundreds of images. That means it’s really only large tech companies that can afford to build these systems for the foreseeable future. They’re also trickier to train, because there aren’t large-scale data sets of high-quality videos paired with text. 

To work around this, Meta combined data from three open-source image and video data sets to train its model. Standard text-image data sets of labeled still images helped the AI learn what objects are called and what they look like. And a database of videos helped it learn how those objects are supposed to move in the world. The combination of the two approaches helped Make-A-Video, which is described in a non-peer-reviewed paper published today, generate videos from text at scale.

Tanmay Gupta, a computer vision research scientist at the Allen Institute for Artificial Intelligence, says Meta’s results are promising. The videos it’s shared show that the model can capture 3D shapes as the camera rotates. The model also has some notion of depth and understanding of lighting. Gupta says some details and movements are decently done and convincing. 

However, “there’s plenty of room for the research community to improve on, especially if these systems are to be used for video editing and professional content creation,” he adds. In particular, it’s still tough to model complex interactions between objects. 

In the video generated by the prompt “An artist’s brush painting on a canvas,” the brush moves over the canvas, but strokes on the canvas aren’t realistic. “I would love to see these models succeed at generating a sequence of interactions, such as ‘The man picks up a book from the shelf, puts on his glasses, and sits down to read it while drinking a cup of coffee,’” Gupta says. 

Continue Reading

Tech

How AI is helping birth digital humans that look and sound just like us

Published

on

How AI is helping birth digital humans that look and sound just like us


Jennifer: And the team has also been exploring how these digital twins can be useful beyond the 2D world of a video conference. 

Greg Cross: I guess the.. the big, you know, shift that’s coming right at the moment is the move from the 2D world of the internet, into the 3D world of the metaverse. So, I mean, and that, and that’s something we’ve always thought about and we’ve always been preparing for, I mean, Jack exists in full 3D, um, You know, Jack exists as a full body. So I mean, Jack can, you know, today we have, you know, we’re building augmented reality, prototypes of Jack walking around on a golf course. And, you know, we can go and ask Jack, how, how should we play this hole? Um, so these are some of the things that we are starting to imagine in terms of the way in which digital people, the way in which digital celebrities. Interact with us as we move into the 3D world.

Jennifer: And he thinks this technology can go a lot further.

Greg Cross: Healthcare and education are two amazing applications of this type of technology. And it’s amazing because we don’t have enough real people to deliver healthcare and education in the real world. So, I mean, so you can, you know, you can imagine how you can use a digital workforce to augment. And, and extend the skills and capability, not replace, but extend the skills and, and capabilities of real people. 

Jennifer: This episode was produced by Anthony Green with help from Emma Cillekens. It was edited by me and Mat Honan, mixed by Garret Lang… with original music from Jacob Gorski.   

If you have an idea for a story or something you’d like to hear, please drop a note to podcasts at technology review dot com.

Thanks for listening… I’m Jennifer Strong.

Continue Reading

Tech

A bionic pancreas could solve one of the biggest challenges of diabetes

Published

on

A bionic pancreas could solve one of the biggest challenges of diabetes


The bionic pancreas, a credit card-sized device called an iLet, monitors a person’s levels around the clock and automatically delivers insulin when needed through a tiny cannula, a thin tube inserted into the body. It is worn constantly, generally on the abdomen. The device determines all insulin doses based on the user’s weight, and the user can’t adjust the doses. 

A Harvard Medical School team has submitted its findings from the study, described in the New England Journal of Medicine, to the FDA in the hopes of eventually bringing the product to market in the US. While a team from Boston University and Massachusetts General Hospital first tested the bionic pancreas in 2010, this is the most extensive trial undertaken so far.

The Harvard team, working with other universities, provided 219 people with type 1 diabetes who had used insulin for at least a year with a bionic pancreas device for 13 weeks. The team compared their blood sugar levels with those of 107 diabetic people who used other insulin delivery methods, including injection and insulin pumps, during the same amount of time. 

The blood sugar levels of the bionic pancreas group fell from 7.9% to 7.3%, while the standard care group’s levels remained steady at 7.7%. The American Diabetes Association recommends a goal of less than 7.0%, but that’s only met by approximately 20% of people with type 1 diabetes, according to a 2019 study

Other types of artificial pancreas exist, but they typically require the user to input information before they will deliver insulin, including the amount of carbohydrates they ate in their last meal. Instead, the iLet takes the user’s weight and the type of meal they’re eating, such as breakfast, lunch, or dinner, added by the user via the iLet interface, and it uses an adaptive learning algorithm to deliver insulin automatically.

Continue Reading

Copyright © 2021 Seminole Press.