Connect with us

Tech

The future starts with Industrial AI

Published

on

The future starts with Industrial AI


“Domain expertise is the secret sauce that separates Industrial AI from more generic AI approaches. Industrial AI will guide innovation and efficiency improvements in capital-intensive industries for years to come,” said Willie K Chan, CTO of AspenTech. Chan was one of the original members of the MIT ASPEN research program that later became AspenTech in 1981, now celebrating 40 years of innovation.

Incorporating that domain expertise gives Industrial AI applications a built-in understanding of the context, inner workings, and interdependencies of highly complex industrial processes and assets, and takes into account the design characteristics, capacity limits, and safety and regulatory guidelines crucial for real-world industrial operations.

More generic AI approaches may come up with specious correlations between industrial processes and equipment, generating inaccurate insights. Generic AI models are trained on large volumes of plant data that usually does not cover the full range of potential operations. That’s because the plant might be working within a very narrow and limited range of conditions for safety or design reasons. Consequently, these generic AI models cannot be extrapolated to respond to market changes or business opportunities. This further exacerbates the productization hurdles around AI initiatives in the industrial sector.

By contrast, Industrial AI leverages domain expertise specific to industrial processes and real-world engineering based on first principles that account for the laws of physics and chemistry (e.g., mass balance, energy balance) as guardrails for mitigating risks and complying with all the necessary safety, operational, and environmental regulations. This makes for a safe, sustainable, and holistic decision-making process, producing comprehensive results and trusted insights over the long run.

Digitalization in industrial facilities is critical to achieving new levels of safety, sustainability, and profitability—and Industrial AI is a key enabler for that transformation.

Industrial AI in action

Talking about Industrial AI as a revolutionary paradigm is one thing; actually seeing what it can do in real-life industrial settings is another. Below are a few examples that demonstrate how capital-intensive industries can leverage Industrial AI to overcome digitalization barriers and drive greater productivity, efficiency, and reliability in their operations.

  • A process plant may deploy an advanced class of Industrial AI-enabled Hybrid Models, drawing on deeper collaboration between domain experts and data scientists, machine learning, and first principles for more comprehensive, accurate, and performant models. These hybrid models can be used to optimally design, operate, and maintain plant assets across their lifecycles. Because they are reliably relevant for a longer period, they also provide a better representation of the plant.
  • A chemical plant could leverage Industrial AI for yielding real-time insights from integrated industrial data from the edge to the cloud, using the Artificial Intelligence of Things (AIoT) to enable agile decision-making across the organization. Using richer, dynamic workflows, supply chain and operations technologies are seamlessly linked together to detect changes in market conditions and automatically adjust the operating plan and schedule in response.
  • A refinery can use Industrial AI to evaluate thousands of oil production scenarios simultaneously, across a diverse set of data sources, to quickly identify optimal crude oil slates for processing. Combined with AI-rich capabilities, enterprise-wide insights, and integrated workflows to improve executive decision-making, this approach empowers workers to allocate their time and efforts to more strategic, value-driving tasks.
  • A next-generation industrial facility could apply Industrial AI as the plant’s “virtual assistant” to validate the quality and efficiency of a production plan, in real time. AI-enabled cognitive guidance ultimately helps reduce reliance on individual domain experts for complex decision-making, and instead institutionalizes historical decisions and best practices to eliminate expertise barriers.

These use cases are by no means exhaustive, but just a few examples of how pervasive, innovative, and broadly applicable Industrial AI’s capabilities can be for the industry and for laying the groundwork for the digital plant of the future.

The digital plant of the future

Industrial organizations need to accelerate digital transformation to stay relevant, competitive, and capable of addressing market disruptors. The Self-Optimizing Plant represents the ultimate vision of that journey.

Industrial AI embeds domain-specific know-how alongside the latest AI and machine-learning capabilities, into fit-for-purpose AI-enabled applications. This enables and accelerates the autonomous and semi-autonomous processes that run those operations—realizing the vision of the Self-Optimizing Plant.

A Self-Optimizing Plant is a self-adapting, self-learning and self-sustaining set of industrial software technologies that work together to anticipate future conditions and act accordingly, adjusting operations within the digital enterprise. A combination of real-time data access and embedded Industrial AI applications empower the Self-Optimizing Plant to constantly improve on itself—drawing on domain knowledge to optimize industrial processes, make easy-to-execute recommendations, and automate mission-critical workflows.

This will have numerous positive impacts on the business, including the following:

  • Curbing carbon emissions caused by process upsets and unplanned shutdowns or startups, helping to meet corporate environmental, social, and governance goals. This reduces both production waste and carbon footprint, driving a new era of industrial sustainability.
  • Boosting overall safety by significantly reducing dangerous site conditions and reallocating staff on the operations and production floors to safer roles.
  • Unlocking new production efficiencies by tapping into new areas of margin optimization and production stability, even during downturns, for greater profitability.

The Self-Optimizing Plant is the ultimate end goal of not just Industrial AI, but the industrial sector’s digital transformation journey. By democratizing the application of industrial intelligence, the digital plant of the future drives greater levels of safety, sustainability, and profitability and empowers the next generation of the digital workforce—future-proofing the business in volatile and complex market conditions. This is the real-world potential of Industrial AI.

To learn more about how Industrial AI is enabling the digital workforce of the future and creating the foundation for the Self-Optimizing Plant, visit
www.aspentech.com/selfoptimizingplant,
www.aspentech.com/accelerate,
and www.aspentech.com/aiot.

This article was written by AspenTech. It was not produced by MIT Technology Review’s editorial staff.

Tech

Inside the conference where researchers are solving the clean-energy puzzle

Published

on

Inside the conference where researchers are solving the clean-energy puzzle


The Advanced Research Projects Agency for Energy (ARPA-E) funds high-risk, high-reward energy research projects, and each year the agency hosts a summit where funding recipients and other researchers and companies in energy can gather to talk about what’s new in the field.

As I listened to presentations, met with researchers, and—especially—wandered around the showcase, I often had a vague feeling of whiplash. Standing at one booth trying to wrap my head around how we might measure carbon stored by plants, I would look over and see another group focused on making nuclear fusion a more practical way to power the world. 

There are plenty of tried-and-true solutions that can begin to address climate change right now: wind and solar power are being deployed at massive scales, electric vehicles are coming to the mainstream, and new technologies are helping companies make even fossil-fuel production less polluting. But as we knock out the easy wins, we’ll also need to get creative to tackle harder-to-solve sectors and reach net-zero emissions. Here are a few intriguing projects from the ARPA-E showcase that caught my eye.

Vaporized rocks

“I heard you have rocks here!” I exclaimed as I approached the Quaise Energy station. 

Quaise’s booth featured a screen flashing through some fast facts and demonstration videos. And sure enough, laid out on the table were two slabs of rock. They looked a bit worse for wear, each sporting a hole about the size of a quarter in the middle, singed around the edges. 

These rocks earned their scorch marks in service of a big goal: making geothermal power possible anywhere. Today, the high temperatures needed to generate electricity using heat from the Earth are only accessible close to the surface in certain places on the planet, like Iceland or the western US. 

Geothermal power could in theory be deployed anywhere, if we could drill deep enough. Getting there won’t be easy, though, and could require drilling 20 kilometers (12 miles) beneath the surface. That’s deeper than any oil and gas drilling done today. 

Rather than grinding through layers of granite with conventional drilling technology, Quaise plans to get through the more obstinate parts of the Earth’s crust by using high-powered millimeter waves to vaporize rock. (It’s sort of like lasers, but not quite.)

Continue Reading

Tech

The emergent industrial metaverse

Published

on

The emergent industrial metaverse


Annika Hauptvogel, head of technology and innovation management at Siemens, describes the industrial metaverse as “immersive, making users feel as if they’re in a real environment; collaborative in real time; open enough for different applications to seamlessly interact; and trusted by the individuals and businesses that participate”—far more than simply a digital world. 

The industrial metaverse will revolutionize the way work is done, but it will also unlock significant new value for business and societies. By allowing businesses to model, prototype, and test dozens, hundreds, or millions of design iterations in real time and in an immersive, physics-based environment before committing physical and human resources to a project, industrial metaverse tools will usher in a new era of solving real-world problems digitally. 

“The real world is very messy, noisy, and sometimes hard to really understand,” says Danny Lange, senior vice president of artificial intelligence at Unity Technologies, a leading platform for creating and growing real-time 3-D content. “The idea of the industrial metaverse is to create a cleaner connection between the real world and the virtual world, because the virtual world is so much easier and cheaper to work with.” 

While real-life applications of the consumer metaverse are still developing, industrial metaverse use cases are purpose-driven, well aligned with real-world problems and business imperatives. The resource efficiencies enabled by industrial metaverse solutions may increase business competitiveness while also continually driving progress toward the sustainability, resilience, decarbonization, and dematerialization goals that are essential to human flourishing. 

This report explores what it will take to create the industrial metaverse, its potential impacts on business and society, the challenges ahead, and innovative use cases that will shape the future. Its key findings are as follows: 

• The industrial metaverse will bring together the digital and real worlds. It will enable a constant exchange of information, data, and decisions and empower industries to solve extraordinarily complex real-world problems digitally, changing how organizations operate and unlocking significant societal benefits. 

• The digital twin is a core metaverse building block. These virtual models simulate real-world objects in detail. The next generation of digital twins will be photorealistic, physics-based, AI-enabled, and linked in metaverse ecosystems. 

• The industrial metaverse will transform every industry. Currently existing digital twins illustrate the power and potential of the industrial metaverse to revolutionize design and engineering, testing, operations, and training. 

Continue Reading

Tech

The Download: China’s retro AI photos, and experts’ AI fears

Published

on

The Download: China’s retro AI photos, and experts’ AI fears


Across social media, a number of creators are generating nostalgic photographs of China with the help of AI. Even though these images get some details wrong, they are realistic enough to trick and impress many of their followers.

The pictures look sophisticated in terms of definition, sharpness, saturation, and color tone. Their realism is partly down to a recent major update of image-making artificial-intelligence program Midjourney that was released in mid-March, which is better not only at generating human hands but also at simulating various photography styles. 

It’s still relatively easy, even for untrained eyes, to tell that the photos are generated by an AI. But for some creators, their experiments are more about trying to recall a specific era in time than trying to trick their audience. Read the full story.

—Zeyi Yang

Zeyi’s story is from China Report, his weekly newsletter giving you the inside track on tech in China. Sign up to receive it in your inbox every Tuesday.

Read more of our reporting on AI-generated images:

+ These new tools let you see for yourself how biased AI image models are. Bias and stereotyping are still huge problems for systems like DALL-E 2 and Stable Diffusion, despite companies’ attempts to fix it. Read the full story.

Continue Reading

Copyright © 2021 Seminole Press.