Connect with us


The science and technology that can help save the ocean



The science and technology that can help save the ocean

Here on Earth, we have more detailed maps of Mars than of our own ocean, and that’s a problem. A massive force for surviving climate change, the ocean absorbs 90% of the heat caused by emissions and generates 50% of the oxygen we breathe. “We have the ocean to thank for so many aspects of our safety and well-being,” says Dawn Wright, oceanographer and chief scientist at geographic information system (GIS) provider Esri, who notes the ocean also provides renewable energy, a major food source, and a transportation corridor for not only ships but submarine internet cables.

Now, the same type of smart maps and geospatial technology guiding outer space exploration support the quest to better understand and protect our ocean. “For the first time, our knowledge of the ocean can approach our knowledge of the land,” Wright says. “We can turn the unknown deep into the known deep.”

GIS—the location intelligence technology businesses and governments use for everything from risk mitigation to crisis response, market analysis to operational efficiency—also applies to the ocean. The logic is simple: the ocean supports a sustainable planet and economy, and data-rich maps can support a sustainable ocean.

Dawn Wright, oceanographer and chief scientist at Esri

‘Tons and tons of beautiful data’

More than 80% of the ocean floor remains unmapped, yet comprehensive ocean maps will be essential for stemming the problems of overfishing, habitat destruction, pollution, and biodiversity loss. It’s easy, and at this point cliché, to say “save our ocean,” but a data-driven map compels people to see why the ocean needs saving, where to start, and what needs to be done. “Seeing the ocean in its true depth and complexity is exactly what we need if we hope to reduce the risk of critically damaging or exhausting marine resources,” Wright says.

Since its release in 2017, the world’s first 3D ocean map spurred a revolution of innovation in ocean-related data and sustainability solutions. The 3D digital ocean map sorts global water masses into 37 distinct volumetric regions, known as ecological marine units, defined by factors in ecosystem health and recovery: temperature, salinity, oxygen, and nutrient levels. Scientists, environmental managers, fishers, and shippers, as well as citizen scientists can use the map to virtually navigate and explore the ocean.

What makes the 3D map of the world’s ocean possible is the enterprise technology capable of collecting and processing data that comes in massive volume and variety. And there’s more data on the way. “This whole idea of marine robotics is one of the big future visions for the ocean,” Wright says. “Robotics and sensors and other instruments are creating tons and tons and tons of beautiful data.”

Once collected, those volumes of data go into a GIS where they are managed and processed, using artificial intelligence (AI) to quickly identify and classify information. The output of GIS, often called location intelligence, comes through as smart maps, spatial analytics, and real-time dashboards—the same kind seen across the world this past year to track and analyze the coronavirus pandemic. These GIS-powered interactive data visualization tools bring clarity even to the most complex of issues and help steer policy and commercial decisions based on a solid grasp of what’s happening now and what will happen next.

“We can even make predictions in terms of what the data will be telling us in 2030,” Wright explains. “How warm will the coast of Florida be in 2050? Will those temperatures kill off the sea grass in that area? Will those temperatures result in a red tide around Tampa that will be so toxic it will kill all of the fisheries there?”

‘The ocean is vulnerable’

Growing up on the Hawaiian Islands and working in American Samoa, Wright understands the ocean as a sacred place. That sentiment guides her work now with fellow scientists, government leaders, and business executives. “I want people to understand that the ocean is vulnerable,” Wright says. “What we’re doing to the ocean right now is having huge consequences. Our day-to-day weather and our long-term climate fully depend on the ocean.”

For Wright, the establishment and enforcement of marine protected areas, such as Cook Islands Marine Park off of New Zealand and Papahānaumokuākea Marine National Monument in the US, represent a triumph in keeping the ocean protected. So far only 7% of the ocean has been marked as protected, compared to 15% of the land. “Even though we have about 7% of the ocean protected in these parks or reserves, less than half of that is an area where you’re not allowed to fish or take the corals or take the pretty rocks,” Wright explains. “So, we have a long, long, long way to go there.”

The ecological marine units are composed of approximately 52 million global ocean measurements that were collected over a 50-year period and provide a 3D view of the world’s oceans.

Protected areas, predictive maps, and pleas from scientists certainly make an impact on corporate and policy decisions. Add to that increasing climate risk and global pressure for social responsibility. These incentives, and the GIS tools needed to respond, are motivating leaders to implement new initiatives.

For example, shipping companies are working to decrease greenhouse gas emissions by designing more efficient vessels, a move that furthers the sustainability cause while reducing business expense. Industries such as retail and manufacturing are putting circular economy principles in place to reclaim or recycle materials after the product has completed its original use. Aquaculture companies are selecting prime locations for responsible fish farming to help reduce overfishing, encourage aquatic ecosystem restoration, and recover endangered species.

Such efforts are moving us toward the vision of a sustainable ocean and thus a sustainable planet. Although Wright feels certain with so much advanced technology—“it’s a great time to be mapping”—what’s less certain is whether the work scientists, governments, and companies are doing will be enough or cede results soon enough.

‘The ocean isn’t too big to fail’

Concerned about mounting threats to the ocean, the United Nations has declared 2021 to 2030 the Decade of Ocean Science for Sustainable Development. “It’s like the Paris Climate Accord for the ocean,” Wright says. “To me, it’s the moonshot … to have something this focused for everybody—governments, universities, nonprofit organizations—this is a really big push.”

A number of important ocean mapping projects are already in various stages of development and execution. For example, Seabed 2030 has the ambitious goal to map the entire ocean floor by the year 2030. The Map of Biodiversity Importance shares habitat models for more than 2,200 at-risk species in the contiguous United States, featuring AI predictor layers for species viability based on development plans and environmental factors. And the Ocean Health Index annually assesses ocean health by looking at social, ecological, and economic benefits to speed progress on ocean policies.

Such projects will aid socially responsible companies (those building sustainability solutions to match business opportunities) in achieving profit while preserving the ocean. Their work often revolves around complex and real-time data, stored and processed with GIS, and presented on smart maps and data visualizations with GIS. Location intelligence helps companies—especially shipping, energy, logistics, and fishing industries—questions like the following:

  • Where would offshore wind turbines have the least impact on commercial fishing?
  • Where should a new transatlantic submarine communications cable go to avoid interference with scallop beds, rare deep-sea coral habitat, or sand mining areas needed for beach restoration?
  • Where are appropriate areas for ships to transit in the Arctic (now that it’s no longer covered with ice year-round) to minimize the impact on sensitive ecosystems?

As the world slowly emerges from the pandemic and enters the United Nations’ Decade of Ocean Science for Sustainable Development, it can do so knowing companies, scientists, and policy makers have the power to make smarter choices for people and the planet.

Those choices will be guided by comprehensive data about the ocean, the technology to map crucial information, and the understanding how, when, and where to intervene. The linchpin will be making sustainability choices in time. “It turns out that the ocean is not too big to fail, unfortunately,” Wright says. “The good news is that it’s also not too big to fix.”

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.


Why can’t tech fix its gender problem?



From left to right: Gordon MOORE, C. Sheldon ROBERTS, Eugene KLEINER, Robert NOYCE, Victor GRINICH, Julius BLANK, Jean HOERNI and Jay LAST.

Not competing in this Olympics, but still contributing to the industry’s success, were the thousands of women who worked in the Valley’s microchip fabrication plants and other manufacturing facilities from the 1960s to the early 1980s. Some were working-class Asian- and Mexican-Americans whose mothers and grandmothers had worked in the orchards and fruit can­neries of the prewar Valley. Others were recent migrants from the East and Midwest, white and often college educated, needing income and interested in technical work. 

With few other technical jobs available to them in the Valley, women would work for less. The preponderance of women on the lines helped keep the region’s factory wages among the lowest in the country. Women continue to dominate high-tech assembly lines, though now most of the factories are located thousands of miles away. In 1970, one early American-owned Mexican production line employed 600 workers, nearly 90% of whom were female. Half a century later the pattern continued: in 2019, women made up 90% of the workforce in one enormous iPhone assembly plant in India. Female production workers make up 80% of the entire tech workforce of Vietnam. 

Venture: “The Boys Club”

Chipmaking’s fiercely competitive and unusually demanding managerial culture proved to be highly influential, filtering down through the millionaires of the first semiconductor generation as they deployed their wealth and managerial experience in other companies. But venture capital was where semiconductor culture cast its longest shadow. 

The Valley’s original venture capitalists were a tight-knit bunch, mostly young men managing older, much richer men’s money. At first there were so few of them that they’d book a table at a San Francisco restaurant, summoning founders to pitch everyone at once. So many opportunities were flowing it didn’t much matter if a deal went to someone else. Charter members like Silicon Valley venture capitalist Reid Dennis called it “The Group.” Other observers, like journalist John W. Wilson, called it “The Boys Club.”

The men who left the Valley’s first silicon chipmaker, Shockley Semiconductor, to start Fairchild Semiconductor in 1957 were called “the Traitorous Eight.”


The venture business was expanding by the early 1970s, even though down markets made it a terrible time to raise money. But the firms founded and led by semiconductor veterans during this period became industry-defining ones. Gene Kleiner left Fairchild Semiconductor to cofound Kleiner Perkins, whose long list of hits included Genentech, Sun Microsystems, AOL, Google, and Amazon. Master intimidator Don Valentine founded Sequoia Capital, making early-stage investments in Atari and Apple, and later in Cisco, Google, Instagram, Airbnb, and many others.

Generations: “Pattern recognition”

Silicon Valley venture capitalists left their mark not only by choosing whom to invest in, but by advising and shaping the business sensibility of those they funded. They were more than bankers. They were mentors, professors, and father figures to young, inexperienced men who often knew a lot about technology and nothing about how to start and grow a business. 

“This model of one generation succeeding and then turning around to offer the next generation of entrepreneurs financial support and managerial expertise,” Silicon Valley historian Leslie Berlin writes, “is one of the most important and under-recognized secrets to Silicon Valley’s ongoing success.” Tech leaders agree with Berlin’s assessment. Apple cofounder Steve Jobs—who learned most of what he knew about business from the men of the semiconductor industry—likened it to passing a baton in a relay race.

Continue Reading


Predicting the climate bill’s effects is harder than you might think



Predicting the climate bill’s effects is harder than you might think

Human decision-making can also cause models and reality to misalign. “People don’t necessarily always do what is, on paper, the most economic,” says Robbie Orvis, who leads the energy policy solutions program at Energy Innovation.

This is a common issue for consumer tax credits, like those for electric vehicles or home energy efficiency upgrades. Often people don’t have the information or funds needed to take advantage of tax credits.

Likewise, there are no assurances that credits in the power sectors will have the impact that modelers expect. Finding sites for new power projects and getting permits for them can be challenging, potentially derailing progress. Some of this friction is factored into the models, Orvis says. But there’s still potential for more challenges than modelers expect.

Not enough

Putting too much stock in results from models can be problematic, says James Bushnell, an economist at the University of California, Davis. For one thing, models could overestimate how much behavior change is because of tax credits. Some of the projects that are claiming tax credits would probably have been built anyway, Bushnell says, especially solar and wind installations, which are already becoming more widespread and cheaper to build.

Still, whether or not the bill meets the expectations of the modelers, it’s a step forward in providing climate-friendly incentives, since it replaces solar- and wind-specific credits with broader clean-energy credits that will be more flexible for developers in choosing which technologies to deploy.

Another positive of the legislation is all its long-term investments, whose potential impacts aren’t fully captured in the economic models. The bill includes money for research and development of new technologies like direct air capture and clean hydrogen, which are still unproven but could have major impacts on emissions in the coming decades if they prove to be efficient and practical. 

Whatever the effectiveness of the Inflation Reduction Act, however, it’s clear that more climate action is still needed to meet emissions goals in 2030 and beyond. Indeed, even if the predictions of the modelers are correct, the bill is still not sufficient for the US to meet its stated goals under the Paris agreement of cutting emissions to half of 2005 levels by 2030.

The path ahead for US climate action isn’t as certain as some might wish it were. But with the Inflation Reduction Act, the country has taken a big step. Exactly how big is still an open question. 

Continue Reading


China has censored a top health information platform



China has censored a top health information platform

The suspension has met with a gleeful social reaction among nationalist bloggers, who accuse DXY of receiving foreign funding, bashing traditional Chinese medicine, and criticizing China’s health-care system. 

DXY is one of the front-runners in China’s digital health startup scene. It hosts the largest online community Chinese doctors use to discuss professional topics and socialize. It also provides a medical news service for a general audience, and it is widely seen as the most influential popular science publication in health care. 

“I think no one, as long as they are somewhat related to the medical profession, doesn’t follow these accounts [of DXY],” says Zhao Yingxi, a global health researcher and PhD candidate at Oxford University, who says he followed DXY’s accounts on WeChat too. 

But in the increasingly polarized social media environment in China, health care is becoming a target for controversy. The swift conclusion that DXY’s demise was triggered by its foreign ties and critical work illustrates how politicized health topics have become. 

Since its launch in 2000, DXY has raised five rounds of funding from prominent companies like Tencent and venture capital firms. But even that commercial success has caused it trouble this week. One of its major investors, Trustbridge Partners, raises funds from sources like Columbia University’s endowments and Singapore’s state holding company Temasek. After DXY’s accounts were suspended, bloggers used that fact to try to back up their claim that DXY has been under foreign influence all along. 

Part of the reason the suspension is so shocking is that DXY is widely seen as one of the most trusted online sources for health education in China. During the early days of the covid-19 pandemic, it compiled case numbers and published a case map that was updated every day, becoming the go-to source for Chinese people seeking to follow covid trends in the country. DXY also made its name by taking down several high-profile fraudulent health products in China.

It also hasn’t shied away from sensitive issues. For example, on the International Day Against Homophobia, Transphobia, and Biphobia in 2019, it published the accounts of several victims of conversion therapy and argued that the practice is not backed by medical consensus. 

“The article put survivors’ voices front and center and didn’t tiptoe around the disturbing reality that conversion therapy is still prevalent and even pushed by highly ranked public hospitals and academics,” says Darius Longarino, a senior fellow at Yale Law School’s Paul Tsai China Center. 

Continue Reading

Copyright © 2021 Seminole Press.