What is interesting about both early and current visions of urban sensing networks and the use that could be made of the data they produced is how close to and yet how far away they are from Constant’s concept of what such technologies would bring about. New Babylon’s technological imagery was a vision of a smart city not marked, like IBM’s, by large-scale data extraction to increase revenue streams through everything from parking and shopping to health care and utility monitoring. New Babylon was unequivocally anticapitalist; it was formed by the belief that pervasive and aware technologies would somehow, someday, release us from the drudgery of labor.
War and sensors
The apocalyptic news broadcast from Mariupol, Kharkiv, Izium, Kherson, and Kyiv since February 2022 seems remote from the smart urbanism of IBM. After all, smart sensors and sophisticated machine-learning algorithms are no match for the brute force of the unguided “dumb bombs” raining down on Ukrainian urban centers. But the horrific images from these smoldering cities should also remind us that historically, these very sensor networks and systems themselves derive from the context of war.
Unbeknownst to Constant, the very “ambient” technologies he imagined to enable the new playful citywere actually emerging in the same period his vision was taking shape—from Cold War–fueled research at the US Department of Defense. This work reached its height during the Vietnam War, when in an effort to stop supply chains flowing from north to south along the Ho Chi Minh Trail, the US Army dropped some 20,000 battery-powered wireless acoustic sensors, advancing General William Westmoreland’s vision of “near 24-hour real- or near-real-time surveillance of all types.” In fact, what the US Defense Advanced Research Projects Agency (DARPA) would later call “network-centric warfare” was the result of multibillion-dollar funding at MIT and Carnegie Mellon, among other elite US universities, to support research into developing distributed wireless sensor networks—the very technologies now powering “greater lethality” for the military’s smartest technology.
Networks of smart sensors are no match for the brute force of unguided “dumb bombs” like the ones raining down on Ukrainian urban centers.
MAXAR TECHNOLOGIES
It is well known that technologies originally developed by DARPA, the storied agency responsible for “catalyzing the development of technologies that maintain and advance the capabilities and technical superiority of the US military” (as a congressional report put it), have been successfully repurposed for civilian use. ARPANET eventually became the Internet, while technologies such as Siri, dynamic random-access memory (DRAM), and the micro hard drive are by now features of everyday life. What is less known is that DARPA-funded technologies have also ended up in the smart city: GPS, mesh networks for smart lighting systems and energy grids, and chemical, biological, and radiological sensors, including genetically reengineered plants that can detect threats. This link between smart cities and military research is highly active today. For example, a recent DARPA research program called CASCADE (Complex Adaptive System Composition and Design Environment) explicitly compares “manned and unmanned aircraft,” which “share data and resources in real time” thanks to connections over wireless networks, to the “critical infrastructure systems” of smart cities—“water, power, transportation, communications, and cyber.” Both, it notes, apply the mathematical techniques of complex dynamic systems. A DARPA tweet puts this link more provocatively: “What do smart cities and air warfare have in common? The need for complex, adaptive networks.”
Both these visions—the sensor-studded battlefield and the instrumented, interconnected, intelligent city enabled by the technologies of distributed sensing and massive data mining—seem to lack a central ingredient: human bodies, which are always the first things to be sacrificed, whether on the battlefield or in the data extraction machinery of smart technologies.
Spaces and environments outfitted with sensor networks can now perceive environmental changes—light, temperature, humidity, sound, or motion—that move over and through a space. In this sense the networks are something akin to bodies, because they are aware of the changing environmental conditions around them—measuring, making distinctions, and reacting to these changes. But what of actual people? Is there another role for us in the smart city apart from serving as convenient repositories of data? In his 1980 book Practice of Everyday Life, the Jesuit social historian Michel de Certeau suggested that resistance to the “celestial eye” of power from above must be met by the force of “ordinary practitioners of the city” who live “down below.”
When we assume that data is more important than the people who created it, we reduce the scope and potential of what diverse human bodies can bring to the “smart city” of the present and future. But the real “smart” city consists not only of commodity flows and information networks generating revenue streams for the likes of Cisco or Amazon. The smartness comes from the diverse human bodies of different genders, cultures, and classes whose rich, complex, and even fragile identities ultimately make the city what it is.
Chris Salter is an artist and professor of immersive arts at the Zurich University of the Arts. His newest book, Sensing Machines: How Sensors Shape Our Everyday Life, has just been published by MIT Press.
People are gathering in virtual spaces to relax, and even sleep, with their headsets on. VR sleep rooms are becoming popular among people who suffer from insomnia or loneliness, offering cozy enclaves where strangers can safely find relaxation and company—most of the time.
Each VR sleep room is created to induce calm. Some imitate beaches and campsites with bonfires, while others re-create hotel rooms or cabins. Soundtracks vary from relaxing beats to nature sounds to absolute silence, while lighting can range from neon disco balls to pitch-black darkness.
The opportunity to sleep in groups can be particularly appealing to isolated or lonely people who want to feel less alone, and safe enough to fall asleep. The trouble is, what if the experience doesn’t make you feel that way? Read the full story.
—Tanya Basu
Inside the conference where researchers are solving the clean-energy puzzle
There are plenty of tried-and-true solutions that can begin to address climate change right now: wind and solar power are being deployed at massive scales, electric vehicles are coming to the mainstream, and new technologies are helping companies make even fossil-fuel production less polluting.
But as we knock out the easy climate wins, we’ll also need to get creative to tackle harder-to-solve sectors and reach net-zero emissions.
The Advanced Research Projects Agency for Energy (ARPA-E) funds high-risk, high-reward energy research projects, and each year the agency hosts a summit where funding recipients and other researchers and companies in energy can gather to talk about what’s new in the field.
As I listened to presentations, met with researchers, and—especially—wandered around the showcase, I often had a vague feeling of whiplash. Standing at one booth trying to wrap my head around how we might measure carbon stored by plants, I would look over and see another group focused on making nuclear fusion a more practical way to power the world.
There are plenty of tried-and-true solutions that can begin to address climate change right now: wind and solar power are being deployed at massive scales, electric vehicles are coming to the mainstream, and new technologies are helping companies make even fossil-fuel production less polluting. But as we knock out the easy wins, we’ll also need to get creative to tackle harder-to-solve sectors and reach net-zero emissions. Here are a few intriguing projects from the ARPA-E showcase that caught my eye.
Vaporized rocks
“I heard you have rocks here!” I exclaimed as I approached the Quaise Energy station.
Quaise’s booth featured a screen flashing through some fast facts and demonstration videos. And sure enough, laid out on the table were two slabs of rock. They looked a bit worse for wear, each sporting a hole about the size of a quarter in the middle, singed around the edges.
These rocks earned their scorch marks in service of a big goal: making geothermal power possible anywhere. Today, the high temperatures needed to generate electricity using heat from the Earth are only accessible close to the surface in certain places on the planet, like Iceland or the western US.
Geothermal power could in theory be deployed anywhere, if we could drill deep enough. Getting there won’t be easy, though, and could require drilling 20 kilometers (12 miles) beneath the surface. That’s deeper than any oil and gas drilling done today.
Rather than grinding through layers of granite with conventional drilling technology, Quaise plans to get through the more obstinate parts of the Earth’s crust by using high-powered millimeter waves to vaporize rock. (It’s sort of like lasers, but not quite.)
Annika Hauptvogel, head of technology and innovation management at Siemens, describes the industrial metaverse as “immersive, making users feel as if they’re in a real environment; collaborative in real time; open enough for different applications to seamlessly interact; and trusted by the individuals and businesses that participate”—far more than simply a digital world.
The industrial metaverse will revolutionize the way work is done, but it will also unlock significant new value for business and societies. By allowing businesses to model, prototype, and test dozens, hundreds, or millions of design iterations in real time and in an immersive, physics-based environment before committing physical and human resources to a project, industrial metaverse tools will usher in a new era of solving real-world problems digitally.
“The real world is very messy, noisy, and sometimes hard to really understand,” says Danny Lange, senior vice president of artificial intelligence at Unity Technologies, a leading platform for creating and growing real-time 3-D content. “The idea of the industrial metaverse is to create a cleaner connection between the real world and the virtual world, because the virtual world is so much easier and cheaper to work with.”
While real-life applications of the consumer metaverse are still developing, industrial metaverse use cases are purpose-driven, well aligned with real-world problems and business imperatives. The resource efficiencies enabled by industrial metaverse solutions may increase business competitiveness while also continually driving progress toward the sustainability, resilience, decarbonization, and dematerialization goals that are essential to human flourishing.
This report explores what it will take to create the industrial metaverse, its potential impacts on business and society, the challenges ahead, and innovative use cases that will shape the future. Its key findings are as follows:
• The industrial metaverse will bring together the digital and real worlds. It will enable a constant exchange of information, data, and decisions and empower industries to solve extraordinarily complex real-world problems digitally, changing how organizations operate and unlocking significant societal benefits.
• The digital twin is a core metaverse building block. These virtual models simulate real-world objects in detail. The next generation of digital twins will be photorealistic, physics-based, AI-enabled, and linked in metaverse ecosystems.
• The industrial metaverse will transform every industry. Currently existing digital twins illustrate the power and potential of the industrial metaverse to revolutionize design and engineering, testing, operations, and training.