Connect with us

Tech

Training data that is meant to make predictive policing less biased is still racist

Published

on

Training data that is meant to make predictive policing less biased is still racist


In their defense, many developers of predictive policing tools say that they have started using victim reports to get a more accurate picture of crime rates in different neighborhoods. In theory, victim reports should be less biased because they aren’t affected by police prejudice or feedback loops.  

But Nil-Jana Akpinar and Alexandra Chouldechova at Carnegie Mellon University show that the view provided by victim reports is also skewed. The pair built their own predictive algorithm using the same model found in several popular tools, including PredPol, the most widely used system in the US. They trained the model on victim report data for Bogotá, Colombia, one of very few cities for which independent crime reporting data is available at a district-by-district level.

When they compared their tool’s predictions against actual crime data for each district, they found that it made significant errors. For example, in a district where few crimes were reported, the tool predicted around 20% of the actual hot spots—locations with a high rate of crime. On the other hand, in a district with a high number of reports, the tool predicted 20% more hot spots than there really were.

For Rashida Richardson, a lawyer and researcher who studies algorithmic bias at the AI Now Institute in New York, these results reinforce existing work that highlights problems with data sets used in predictive policing. “They lead to biased outcomes that do not improve public safety,” she says. “I think many predictive policing vendors like PredPol fundamentally do not understand how structural and social conditions bias or skew many forms of crime data.”

So why did the algorithm get it so wrong? The problem with victim reports is that Black people are more likely to be reported for a crime than white. Richer white people are more likely to report a poorer Black person than the other way around. And Black people are also more likely to report other Black people. As with arrest data, this leads to Black neighborhoods being flagged as crime hot spots more often than they should be.

Other factors distort the picture too. “Victim reporting is also related to community trust or distrust of police,” says Richardson. “So if you are in a community with a historically corrupt or notoriously racially biased police department, that will affect how and whether people report crime.” In this case, a predictive tool might underestimate the level of crime in an area, so it will not get the policing it needs. 

Tech

Human creators stand to benefit as AI rewrites the rules of content creation

Published

on

Human creators stand to benefit as AI rewrites the rules of content creation


A game-changer for content creation

Among the AI-related technologies to have emerged in the past several years is generative AI—deep-learning algorithms that allow computers to generate original content, such as text, images, video, audio, and code. And demand for such content will likely jump in the coming years—Gartner predicts that by 2025, generative AI will account for 10% of all data created, compared with 1% in 2022. 

Screenshot of Jason Allen’s work “Théâtre D’opéra Spatial,” Discord 

“Théâtre D’opéra Spatial” is an example of AI-generated content (AIGC), created with the Midjourney text-to-art generator program. Several other AI-driven art-generating programs have also emerged in 2022, capable of creating paintings from single-line text prompts. The diversity of technologies reflects a wide range of artistic styles and different user demands. DALL-E 2 and Stable Diffusion, for instance, are focused mainly on western-style artwork, while Baidu’s ERNIE-ViLG and Wenxin Yige produce images influenced by Chinese aesthetics. At Baidu’s deep learning developer conference Wave Summit+ 2022, the company announced that Wenxin Yige has been updated with new features, including turning photos into AI-generated art, image editing, and one-click video production.

Meanwhile, AIGC can also include articles, videos, and various other media offerings such as voice synthesis. A technology that generates audible speech indistinguishable from the voice of the original speaker, voice synthesis can be applied in many scenarios, including voice navigation for digital maps. Baidu Maps, for example, allows users to customize its voice navigation to their own voice just by recording nine sentences.

Recent advances in AI technologies have also created generative language models that can fluently compose texts with just one click. They can be used for generating marketing copy, processing documents, extracting summaries, and other text tasks, unlocking creativity that other technologies such as voice synthesis have failed to tap. One of the leading generative language models is Baidu’s ERNIE 3.0, which has been widely applied in various industries such as health care, education, technology, and entertainment.

“In the past year, artificial intelligence has made a great leap and changed its technological direction,” says Robin Li, CEO of Baidu. “Artificial intelligence has gone from understanding pictures and text to generating content.” Going one step further, Baidu App, a popular search and newsfeed app with over 600 million monthly users, including five million content creators, recently released a video editing feature that can produce a short video accompanied by a voiceover created from data provided in an article.

Improving efficiency and growth

As AIGC becomes increasingly common, it could make content creation more efficient by getting rid of repetitive, time-intensive tasks for creators such as sorting out source assets and voice recordings and rendering images. Aspiring filmmakers, for instance, have long had to pay their dues by spending countless hours mastering the complex and tedious process of video editing. AIGC may soon make that unnecessary. 

Besides boosting efficiency, AIGC could also increase business growth in content creation amid rising demand for personalized digital content that users can interact with dynamically. InsightSLICE forecasts that the global digital creation market will on average grow 12% annually between 2020 and 2030 and hit $38.2 billion. With content consumption fast outpacing production, traditional development methods will likely struggle to meet such increasing demand, creating a gap that could be filled by AIGC. “AI has the potential to meet this massive demand for content at a tenth of the cost and a hundred times or thousands of times faster in the next decade,” Li says.

AI with humanity as its foundation

AIGC can also serve as an educational tool by helping children develop their creativity. StoryDrawer, for instance, is an AI-driven program designed to boost children’s creative thinking, which often declines as the focus in their education shifts to rote learning. 

Continue Reading

Tech

The Download: the West’s AI myth, and Musk v Apple

Published

on

The Download: the West’s AI myth, and Musk v Apple


While the US and the EU may differ on how to regulate tech, their lawmakers seem to agree on one thing: the West needs to ban AI-powered social scoring.

As they understand it, social scoring is a practice in which authoritarian governments—specifically China—rank people’s trustworthiness and punish them for undesirable behaviors, such as stealing or not paying back loans. Essentially, it’s seen as a dystopian superscore assigned to each citizen.

The reality? While there have been some contentious local experiments with social credit scores in China, there is no countrywide, all-seeing social credit system with algorithms that rank people.

The irony is that while US and European politicians try to ban systems that don’t really exist, systems that do rank and penalize people are already in place in the West—and are denying people housing and jobs in the process. Read the full story.

—Melissa Heikkilä

Melissa’s story is from The Algorithm, her weekly AI newsletter covering all of the industry’s most interesting developments. Sign up to receive it in your inbox every Monday.

The must-reads

I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.

1 Apple has reportedly threatened to pull Twitter from the App Store
According to Elon Musk. (NYT $)
+ Musk has threatened to “go to war” with the company after it decided to stop advertising on Twitter. (WP $)
+ Apple’s reluctance to advertise on Twitter right now isn’t exactly unique. (Motherboard)
+ Twitter’s child protection team in Asia has been gutted. (Wired $)

2 Another crypto firm has collapsed
Lender BlockFi has filed for bankruptcy, and is (partly) blaming FTX. (WSJ $)
+ The company is suing FTX founder Sam Bankman-Fried. (FT $)
+ It looks like the much-feared “crypto contagion” is spreading. (NYT $)

3 AI is rapidly becoming more powerful—and dangerous
That’s particularly worrying when its growth is too much for safety teams to handle. (Vox)
+ Do AI systems need to come with safety warnings? (MIT Technology Review)
+ This AI chat-room game is gaining a legion of fans. (The Guardian)

4 A Pegasus spyware investigation is in danger of being compromised 
It’s the target of a disinformation campaign, security experts have warned. (The Guardian)
+ Cyber insurance won’t protect you from theft of your data. (The Guardian)

5 Google gave the FBI geofence data for its January 6 investigation 
Google identified more than 5,000 devices near the US Capitol during the riot. (Wired $)

6 Monkeypox isn’t going anywhere
But it’s not on the rise, either. (The Atlantic $)
+ The World Health Organization says it will now be known as mpox. (BBC)
+ Everything you need to know about the monkeypox vaccines. (MIT Technology Review)

7 What it’s like to be the unwitting face of a romance scam
James Scott Geras’ pictures have been used to catfish countless women. (Motherboard)

Continue Reading

Tech

What’s next in cybersecurity

Published

on

The Download: cybersecurity’s next act, and mass protests in China


One of the reasons cyber hasn’t played a bigger role in the war, according to Carhart, is because “in the whole conflict, we saw Russia being underprepared for things and not having a good game plan. So it’s not really surprising that we see that as well in the cyber domain.”

Moreover, Ukraine, under the leadership of  Zhora and his cybersecurity agency, has been working on its cyber defenses for years, and it has received support from the international community since the war started, according to experts. Finally, an interesting twist in the conflict on the internet between Russia and Ukraine was the rise of the decentralized, international cyber coalition known as the IT Army, which scored some significant hacks, showing  that war in the future can also be fought by hacktivists. 

Ransomware runs rampant again

This year, other than the usual corporations, hospitals, and schools, government agencies in Costa Rica, Montenegro, and Albania all suffered damaging ransomware attacks too. In Costa Rica, the government declared a national emergency, a first after a ransomware attack. And in Albania, the government expelled Iranian diplomats from the country—a first in the history of cybersecurity—following a destructive cyberattack.

These types of attacks were at an all-time high in 2022, a trend that will likely continue next year, according to Allan Liska, a researcher who focuses on ransomware at cybersecurity firm Recorded Future. 

“[Ransomware is] not just a technical problem like an information stealer or other commodity malware. There are real-world, geopolitical implications,” he says. In the past, for example, a North Korean ransomware called WannaCry caused severe disruption to the UK’s National Health System and hit an estimated 230,000 computers worldwide

Luckily, it’s not all bad news on the ransomware front. According to Liska, there are some early signs that point to “the death of the ransomware-as-a-service model,” in which ransomware gangs lease out hacking tools. The main reason, he said, is that whenever a gang gets too big, “something bad happens to them.”

For example, the ransomware groups REvil and DarkSide/BlackMatter were hit by governments; Conti, a Russian ransomware gang, unraveled internally when a Ukrainian researcher appalled by Conti’s public support of the war leaked internal chats; and the LockBit crew also suffered the leak of its code.  

“We are seeing a lot of the affiliates deciding that maybe I don’t want to be part of a big ransomware group, because they all have targets on their back, which means that I might have a target on my back, and I just want to carry out my cybercrime,” Liska says. 

Continue Reading

Copyright © 2021 Seminole Press.