Connect with us

Tech

Why capturing carbon is an essential part of Biden’s climate plans

Published

on

Shuchi Talati


President Biden’s early climate efforts prioritized popular actions: rejoining the Paris agreement, purchasing clean energy and vehicles, and eliminating fossil fuel subsidies. But the administration’s strategies to drive the nation toward net-zero emissions also lean heavily, if less obviously, on a touchier area: capturing or removing huge amounts of the carbon dioxide driving global warming.

In July, the US Department of Energy’s Office of Fossil Energy tacked “and Carbon Management” onto its name, signaling a distinct shift in an agency traditionally focused on developing more efficient ways of extracting fossil fuels and converting them into energy. Now, the central goal of the office, backed with around 750 federal employees and nearly a billion-dollar budget, is to develop better, cheaper ways to clean up climate polluting industries.

Shuchi Talati, chief of staff at the Office of Fossil Energy and Carbon Management.

COURTESY PHOTO

New priorities include: advancing technologies and techniques that can prevent CO2 from escaping factories and power plants, remove it from the atmosphere, turn it into new products and store it away forever.

The office placed several researchers focused on these issues into leadership roles, including naming Shuchi Talati chief of staff. She’ll oversee many of the changes in the agency alongside Jennifer Wilcox, the principal deputy assistant secretary. Talati was previously the deputy director of policy at Carbon 180, a proponent of carbon removal and recycling, and a fellow at the Union of Concerned Scientists.

President Biden’s agenda is also playing out in the $1 trillion infrastructure bill, which the Senate already passed. It provides billions of dollars to develop direct-air capture plants that can suck CO2 out of the air, pipelines to move it around, and sites where it can be buried in geological formations deep underground.

Many in the climate movement argue that carbon capture is a distraction from the core mission of eliminating fossil fuels as quickly as possible. And the field is littered with failures, including a variety of Department of Energy-backed boondoggles like the nearly $2 billion FutureGen clean coal project.

But research finds it will be far harder and more expensive to eliminate emissions and prevent dangerous levels of warming without carbon capture and removal, particularly in heavy industries where few other options exist. And the number of successful commercial projects is growing around the globe, curtailing the emissions from steel, hydrogen, and fertilizer plants.

In the interview that follows, I asked Talati what role carbon capture should play in our response to climate change and how the Office of Fossil Energy and Carbon Management is working to accelerate progress in the field.

The interview that follows has been lightly edited for length and clarity.

Why was it important to shift or expand your office’s mandate?

When it comes to climate goals, especially net zero, carbon management has an increasingly important role to play. That means not only dealing with our continued emissions, but recognizing that for every type of fossil fuel that’s burned we have to manage the carbon that comes with that.

Ensuring that those two were connected in the name of our office is important to how this office does its work and how it’s perceived. Because we don’t want to do any work on fossil fuels that is not related to mitigating the environmental impacts associated with it.

How does the Department of Energy see carbon capture and storage specifically fitting into the broader effort to accelerate decarbonization and address climate change?

Where we can transition to renewables, we want to make those choices. But where we can’t, CCS [carbon capture and storage] has a really important role to play. With industries like cement, we know that CCS is absolutely essential to capturing those emissions.

We can capture not only the emissions from the actual energy that’s needed, but the emissions released during the production process, where there are no other mechanisms to prevent that CO2. CCS is just an incredibly versatile way to capture emissions from a lot of these hard-to-decarbonize sectors.

When it comes to the power industry, looking at natural gas, especially, there are a lot of natural gas power plants that are not scheduled to retire until after 2035, which is after our 100% clean electricity goal. That represents over 200 gigawatts that is going to continue operating with natural gas. So to enable that to be clean, CCS is really the only option.

I want to say too, for natural gas, we’ve never actually demonstrated this technology before. So if we really want to understand the true costs and what commercialization will really look like, we need to first invest in demonstration. That’s really what our office could do.

Many climate activists consider support for carbon capture akin to granting a social license for the fossil fuel industry to continue operating. How do you respond when you hear people raise those concerns?

I understand where a lot of these critiques are coming from. This has not been an industry that has been necessarily straightforward. And I think the fact that it’s coupled to the fossil fuel industry is really challenging, and that’s something that we are grappling with.

But I think when it comes to the committed infrastructure we have, and especially looking at the industrial sector—where it’s not necessarily about the fossil fuel industry, but about creating products that we know we’re going to continue to need, like concrete—we have to think about what that means for emissions, and getting to zero. There really are no other options.

The role of our office, and the role of the federal government, is to ensure that we’re doing this properly and creating an industry that is responsible and building the environmental safeguards around this technology that might not have existed in the past. 

You mentioned the role carbon capture can potentially play for natural gas plants that are going to continue operating for decades. But do you anticipate carbon capture playing a role in the building of new electricity generation energy going forward?

Honestly, I think that’s really dependent on the market and how private companies are viewing their investments.

We are only supportive of abated fossil fuels, so when it comes to building new natural gas, our support is very dependent on whether that CCS infrastructure is there. And I think a really important component of that, too, is reliable storage. Right now, a lot of CO2 is used for enhanced oil recovery [freeing up remaining oil from wells] and we want to make sure that we are helping to build a durable storage infrastructure, around geologic reservoirs and around CO2-to-products that have long duration storage, like building materials.

Even if this can be an effective tool for cement plants or for some element of existing natural gas plants, there’s still a reasonable fear that there could be fudging here. That emissions could leak out more than companies are saying, both from plants themselves or from extraction sites, or because carbon storage sites don’t work as effectively as hoped. How can we ensure that the industry does these things in reliable ways?

I think that’s the role of our office, and I think that’s the role of this administration. I totally agree. I think we need to ensure that reliable storage is actually working. We have experience in terms of the way CO2 has been stored in depleted oil and gas reservoirs, but we don’t have as much experience with saline aquifers [permeable rocks filled with salt water].

We need to do demonstration projects. We need to have [monitoring, reporting, and verification] capabilities that we trust, that are robust, and that work at scale. And that takes investment from the government and really dedicated capacity.

I think, too, our infrastructure has leaks all throughout the supply chain for natural gas. So that is actually one of the priorities we listed in our upcoming budget: reducing methane.

That means changing the way our office has often worked in the past. We want to shift the conversation to having the least environmental impacts possible from the extraction that’s happening.

The infrastructure bill that’s moving forward includes funding for direct-air capture plants. What role does the Department of Energy see carbon removal directly from the air playing in the efforts to address climate change?

It’s incredibly exciting that this is the biggest investment in carbon removal in history. The fact that we are recognizing the need to have focused demonstration funds for direct-air capture is the absolute first of a kind globally. And so [the Department of Energy] plays a really important role in helping to invest in these early technologies, to demonstrate them and to really be able to help private companies leverage the incredible work that they’ve done in this space.

When it comes to direct-air capture, these demonstrations are incredibly expensive. And $3.5 billion dollars doesn’t actually go as far as most people think that it might.

We are incredibly excited about this technology. But there are others that I think merit equal focus, like enhanced mineralization [developing ways to accelerate the natural process by which certain types of minerals capture carbon dioxide].

When we talk about engineered carbon removal, I think enhanced mineralization hasn’t quite had its moment in the sun yet. [Direct-air capture] is the first thing that comes to mind—and we want to change that. Enhanced mineralization has incredible capacity to scale.

How do you feel about the tension, or if there is a tension, between scaling up carbon removal, but also being mindful of the potential limits on our ability to do it?

That’s an incredibly important question.

Carbon dioxide removal should not be applied in cases where we can reduce emissions other ways. For companies, that means reducing their emissions through energy efficiency, or electrification, or whatever those other ways might be. Avoiding emissions first is always the priority. Always. Because it’s going to be cheaper, it is going to be more efficient to do that. Carbon removal is hard. It’s expensive. And the industry doesn’t exist yet at scale.

Tech

The hunter-gatherer groups at the heart of a microbiome gold rush

Published

on

The hunter-gatherer groups at the heart of a microbiome gold rush


The first step to finding out is to catalogue what microbes we might have lost. To get as close to ancient microbiomes as possible, microbiologists have begun studying multiple Indigenous groups. Two have received the most attention: the Yanomami of the Amazon rainforest and the Hadza, in northern Tanzania. 

Researchers have made some startling discoveries already. A study by Sonnenburg and his colleagues, published in July, found that the gut microbiomes of the Hadza appear to include bugs that aren’t seen elsewhere—around 20% of the microbe genomes identified had not been recorded in a global catalogue of over 200,000 such genomes. The researchers found 8.4 million protein families in the guts of the 167 Hadza people they studied. Over half of them had not previously been identified in the human gut.

Plenty of other studies published in the last decade or so have helped build a picture of how the diets and lifestyles of hunter-gatherer societies influence the microbiome, and scientists have speculated on what this means for those living in more industrialized societies. But these revelations have come at a price.

A changing way of life

The Hadza people hunt wild animals and forage for fruit and honey. “We still live the ancient way of life, with arrows and old knives,” says Mangola, who works with the Olanakwe Community Fund to support education and economic projects for the Hadza. Hunters seek out food in the bush, which might include baboons, vervet monkeys, guinea fowl, kudu, porcupines, or dik-dik. Gatherers collect fruits, vegetables, and honey.

Mangola, who has met with multiple scientists over the years and participated in many research projects, has witnessed firsthand the impact of such research on his community. Much of it has been positive. But not all researchers act thoughtfully and ethically, he says, and some have exploited or harmed the community.

One enduring problem, says Mangola, is that scientists have tended to come and study the Hadza without properly explaining their research or their results. They arrive from Europe or the US, accompanied by guides, and collect feces, blood, hair, and other biological samples. Often, the people giving up these samples don’t know what they will be used for, says Mangola. Scientists get their results and publish them without returning to share them. “You tell the world [what you’ve discovered]—why can’t you come back to Tanzania to tell the Hadza?” asks Mangola. “It would bring meaning and excitement to the community,” he says.

Some scientists have talked about the Hadza as if they were living fossils, says Alyssa Crittenden, a nutritional anthropologist and biologist at the University of Nevada in Las Vegas, who has been studying and working with the Hadza for the last two decades.

The Hadza have been described as being “locked in time,” she adds, but characterizations like that don’t reflect reality. She has made many trips to Tanzania and seen for herself how life has changed. Tourists flock to the region. Roads have been built. Charities have helped the Hadza secure land rights. Mangola went abroad for his education: he has a law degree and a master’s from the Indigenous Peoples Law and Policy program at the University of Arizona.

Continue Reading

Tech

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan

Published

on

The Download: a microbiome gold rush, and Eric Schmidt’s election misinformation plan


Over the last couple of decades, scientists have come to realize just how important the microbes that crawl all over us are to our health. But some believe our microbiomes are in crisis—casualties of an increasingly sanitized way of life. Disturbances in the collections of microbes we host have been associated with a whole host of diseases, ranging from arthritis to Alzheimer’s.

Some might not be completely gone, though. Scientists believe many might still be hiding inside the intestines of people who don’t live in the polluted, processed environment that most of the rest of us share. They’ve been studying the feces of people like the Yanomami, an Indigenous group in the Amazon, who appear to still have some of the microbes that other people have lost. 

But there is a major catch: we don’t know whether those in hunter-gatherer societies really do have “healthier” microbiomes—and if they do, whether the benefits could be shared with others. At the same time, members of the communities being studied are concerned about the risk of what’s called biopiracy—taking natural resources from poorer countries for the benefit of wealthier ones. Read the full story.

—Jessica Hamzelou

Eric Schmidt has a 6-point plan for fighting election misinformation

—by Eric Schmidt, formerly the CEO of Google, and current cofounder of philanthropic initiative Schmidt Futures

The coming year will be one of seismic political shifts. Over 4 billion people will head to the polls in countries including the United States, Taiwan, India, and Indonesia, making 2024 the biggest election year in history.

Continue Reading

Tech

Navigating a shifting customer-engagement landscape with generative AI

Published

on

Navigating a shifting customer-engagement landscape with generative AI


A strategic imperative

Generative AI’s ability to harness customer data in a highly sophisticated manner means enterprises are accelerating plans to invest in and leverage the technology’s capabilities. In a study titled “The Future of Enterprise Data & AI,” Corinium Intelligence and WNS Triange surveyed 100 global C-suite leaders and decision-makers specializing in AI, analytics, and data. Seventy-six percent of the respondents said that their organizations are already using or planning to use generative AI.

According to McKinsey, while generative AI will affect most business functions, “four of them will likely account for 75% of the total annual value it can deliver.” Among these are marketing and sales and customer operations. Yet, despite the technology’s benefits, many leaders are unsure about the right approach to take and mindful of the risks associated with large investments.

Mapping out a generative AI pathway

One of the first challenges organizations need to overcome is senior leadership alignment. “You need the necessary strategy; you need the ability to have the necessary buy-in of people,” says Ayer. “You need to make sure that you’ve got the right use case and business case for each one of them.” In other words, a clearly defined roadmap and precise business objectives are as crucial as understanding whether a process is amenable to the use of generative AI.

The implementation of a generative AI strategy can take time. According to Ayer, business leaders should maintain a realistic perspective on the duration required for formulating a strategy, conduct necessary training across various teams and functions, and identify the areas of value addition. And for any generative AI deployment to work seamlessly, the right data ecosystems must be in place.

Ayer cites WNS Triange’s collaboration with an insurer to create a claims process by leveraging generative AI. Thanks to the new technology, the insurer can immediately assess the severity of a vehicle’s damage from an accident and make a claims recommendation based on the unstructured data provided by the client. “Because this can be immediately assessed by a surveyor and they can reach a recommendation quickly, this instantly improves the insurer’s ability to satisfy their policyholders and reduce the claims processing time,” Ayer explains.

All that, however, would not be possible without data on past claims history, repair costs, transaction data, and other necessary data sets to extract clear value from generative AI analysis. “Be very clear about data sufficiency. Don’t jump into a program where eventually you realize you don’t have the necessary data,” Ayer says.

The benefits of third-party experience

Enterprises are increasingly aware that they must embrace generative AI, but knowing where to begin is another thing. “You start off wanting to make sure you don’t repeat mistakes other people have made,” says Ayer. An external provider can help organizations avoid those mistakes and leverage best practices and frameworks for testing and defining explainability and benchmarks for return on investment (ROI).

Using pre-built solutions by external partners can expedite time to market and increase a generative AI program’s value. These solutions can harness pre-built industry-specific generative AI platforms to accelerate deployment. “Generative AI programs can be extremely complicated,” Ayer points out. “There are a lot of infrastructure requirements, touch points with customers, and internal regulations. Organizations will also have to consider using pre-built solutions to accelerate speed to value. Third-party service providers bring the expertise of having an integrated approach to all these elements.”

Continue Reading

Copyright © 2021 Seminole Press.