As a professional field, climate change adaptation remained neglected, misunderstood, and small through the early 2000s, when Lara Hansen, an ecotoxicologist by training, began working on the subject for the World Wildlife Fund. Hansen and her colleagues would joke that all the world’s adaptation experts and researchers “could fit in an elevator.” But soon, the field began to mushroom. For one thing, it had become clearer that emissions were not dropping—especially after the George W. Bush administration announced in 2001 that it would not implement the Kyoto Protocol, another international agreement to prod countries to rein in atmospheric carbon.
The president’s inaction threw a wrench into international negotiations; partly as a result, when the United Nations forged another treaty called the Marrakesh Accords, they included far more about adaptation than in the past. If the US was going to keep dumping carbon into the sky without limit, then the whole world would have far more things to adapt to.
But environmental groups were still often hesitant to wade into the topic—a missed opportunity, Hansen thinks. “I have long said that adaptation is the gateway drug to mitigation. Because once you see how big the problem will be for your community and how much your way of life will have to change,” she says, “suddenly it’s like, ‘Well, that sucks. It would be a hell of a lot easier to just stop emitting carbon dioxide into the atmosphere.’”
In 2006, in a hotel ballroom in Florida, she led a workshop for a couple hundred people to talk about coral reef conservation, including commercial fishing companies and tourism businesses that were not as familiar with the implications of climate change. That evening, at a local theater, the workshop organizers screened Al Gore’s climate documentary An Inconvenient Truth and aired a video that simulated future floods in south Florida. “I had it zoomed into the Florida Keys,” Hansen recalls, “and you could see that with a two-meter rise in sea level and a Category One hurricane storm surge, the only thing that was still standing in the Florida Keys were a couple of highway bridges and the Key West cemetery.” The audience asked her to replay it three times. Afterward, Hansen said, she heard there was much more interest in mitigation efforts from people in the region.
In the years since, the ranks of adaptation experts have continued to grow exponentially. In 2008, Hansen cofounded an organization called EcoAdapt, a clearinghouse of adaptation reports and lessons, and a convener of experts from around the country. When the Obama administration required federal agencies to develop adaptation plans, it prompted a flurry of other institutions to do the same. “It is actually the thing that probably got more state and local governments thinking about it than anything previously had,” Hansen says.
But adaptation work likely still suffers from some of the constraints it bore in the beginning. Infrastructure, for instance, is built on a slow timeline, and the lag in understanding and acceptance means that planners haven’t necessarily caught up. Burton has noted how some of the railroads in the United Kingdom were ill-suited to withstand the recent heat wave. “The railway lines were designed for what the climate has been over the last 50 years,” he lamented, not what the climate is now and is going to become.
The Advanced Research Projects Agency for Energy (ARPA-E) funds high-risk, high-reward energy research projects, and each year the agency hosts a summit where funding recipients and other researchers and companies in energy can gather to talk about what’s new in the field.
As I listened to presentations, met with researchers, and—especially—wandered around the showcase, I often had a vague feeling of whiplash. Standing at one booth trying to wrap my head around how we might measure carbon stored by plants, I would look over and see another group focused on making nuclear fusion a more practical way to power the world.
There are plenty of tried-and-true solutions that can begin to address climate change right now: wind and solar power are being deployed at massive scales, electric vehicles are coming to the mainstream, and new technologies are helping companies make even fossil-fuel production less polluting. But as we knock out the easy wins, we’ll also need to get creative to tackle harder-to-solve sectors and reach net-zero emissions. Here are a few intriguing projects from the ARPA-E showcase that caught my eye.
Vaporized rocks
“I heard you have rocks here!” I exclaimed as I approached the Quaise Energy station.
Quaise’s booth featured a screen flashing through some fast facts and demonstration videos. And sure enough, laid out on the table were two slabs of rock. They looked a bit worse for wear, each sporting a hole about the size of a quarter in the middle, singed around the edges.
These rocks earned their scorch marks in service of a big goal: making geothermal power possible anywhere. Today, the high temperatures needed to generate electricity using heat from the Earth are only accessible close to the surface in certain places on the planet, like Iceland or the western US.
Geothermal power could in theory be deployed anywhere, if we could drill deep enough. Getting there won’t be easy, though, and could require drilling 20 kilometers (12 miles) beneath the surface. That’s deeper than any oil and gas drilling done today.
Rather than grinding through layers of granite with conventional drilling technology, Quaise plans to get through the more obstinate parts of the Earth’s crust by using high-powered millimeter waves to vaporize rock. (It’s sort of like lasers, but not quite.)
Annika Hauptvogel, head of technology and innovation management at Siemens, describes the industrial metaverse as “immersive, making users feel as if they’re in a real environment; collaborative in real time; open enough for different applications to seamlessly interact; and trusted by the individuals and businesses that participate”—far more than simply a digital world.
The industrial metaverse will revolutionize the way work is done, but it will also unlock significant new value for business and societies. By allowing businesses to model, prototype, and test dozens, hundreds, or millions of design iterations in real time and in an immersive, physics-based environment before committing physical and human resources to a project, industrial metaverse tools will usher in a new era of solving real-world problems digitally.
“The real world is very messy, noisy, and sometimes hard to really understand,” says Danny Lange, senior vice president of artificial intelligence at Unity Technologies, a leading platform for creating and growing real-time 3-D content. “The idea of the industrial metaverse is to create a cleaner connection between the real world and the virtual world, because the virtual world is so much easier and cheaper to work with.”
While real-life applications of the consumer metaverse are still developing, industrial metaverse use cases are purpose-driven, well aligned with real-world problems and business imperatives. The resource efficiencies enabled by industrial metaverse solutions may increase business competitiveness while also continually driving progress toward the sustainability, resilience, decarbonization, and dematerialization goals that are essential to human flourishing.
This report explores what it will take to create the industrial metaverse, its potential impacts on business and society, the challenges ahead, and innovative use cases that will shape the future. Its key findings are as follows:
• The industrial metaverse will bring together the digital and real worlds. It will enable a constant exchange of information, data, and decisions and empower industries to solve extraordinarily complex real-world problems digitally, changing how organizations operate and unlocking significant societal benefits.
• The digital twin is a core metaverse building block. These virtual models simulate real-world objects in detail. The next generation of digital twins will be photorealistic, physics-based, AI-enabled, and linked in metaverse ecosystems.
• The industrial metaverse will transform every industry. Currently existing digital twins illustrate the power and potential of the industrial metaverse to revolutionize design and engineering, testing, operations, and training.
Across social media, a number of creators are generating nostalgic photographs of China with the help of AI. Even though these images get some details wrong, they are realistic enough to trick and impress many of their followers.
The pictures look sophisticated in terms of definition, sharpness, saturation, and color tone. Their realism is partly down to a recent major update of image-making artificial-intelligence program Midjourney that was released in mid-March, which is better not only at generating human hands but also at simulating various photography styles.
It’s still relatively easy, even for untrained eyes, to tell that the photos are generated by an AI. But for some creators, their experiments are more about trying to recall a specific era in time than trying to trick their audience. Read the full story.
—Zeyi Yang
Zeyi’s story is from China Report, his weekly newsletter giving you the inside track on tech in China. Sign up to receive it in your inbox every Tuesday.
Read more of our reporting on AI-generated images:
+ These new tools let you see for yourself how biased AI image models are. Bias and stereotyping are still huge problems for systems like DALL-E 2 and Stable Diffusion, despite companies’ attempts to fix it. Read the full story.