Connect with us

Politics

Will TikTok Take Over Digital Attraction for Banks? – ReadWrite

Published

on

Deborah Boyland


TikTok is one of the fastest-growing social media platforms to date.

From a marketing standpoint, the social platform has enormous potential. However, the app is also known for attracting a particularly young audience. With these factors in mind, how might TikTok affect digital attraction for banks?

TikTok has the potential to be a powerful marketing tool. For example, videos posted on the app can garner thousands to millions of views. For the FinTech industry, TikTok may be ideal for increasing digital attraction.

This article will explore what digital attraction for banks is, and how TikTok can be useful. By discussing the advantages of the platform, we will strive to answer the question:

A Closer Look at Digital Attraction for Banks

When discussing digital attraction, it is crucial to examine the role of the customer.

Building digital interest in products or services requires businesses to understand their audiences. Therefore, learning more about your audience is key to learning how to attract them. 

Banks must approach digital attraction the way someone might approach a new relationship. A solid foundation of trust must be established first.

Digital attraction has 3 core components

  •       Empathy: Showing a customer that there is complete understanding of their problems
  •       Compassion: Demonstrating a high level of care for the customer’s well-being
  •       Ease: Soothing customer worries by providing planned out solutions

Fulfilling the core needs is essential for guiding customer’s through the buyer’s journey. It places the business or professional in the role of a trusted guide or advisor. In this role, the guide can then lay out the exact plan of action for the customer to take. 

It is important to understand that digital attraction can take time. Like in relationships, trust and loyalty build up over time. Giving the relationship with customers space to breathe is key.  

This focus on the needs of the customer requires banks to examine their target audiences. Looking at demographics helps identify missed opportunities with specific groups of people.

Additionally, to learn more about their customers’ needs, banks must develop buyer personas.

A buyer persona is a highly detailed profile of your target customer. It will describe their specific wants, needs, and problems.

Creating multiple buyer personas will help compartmentalize your audience. From these, targeted ad and marketing campaigns can better attract each persona.

Finding Banking Clients Digitally

Once you have determined your target audience, there is the matter of reaching them.

Three main kinds of digital marketing are used for attraction:

  •   Content Marketing: This is where you’ll find a lot of blog writing and social media sharing. Content marketing uses keywords and tags to help find the desired customers.
  •   Email Campaigns: After piquing a customer’s interest, it is crucial to keep the brand on their mind. Email campaigns help nurture relationships with customers until they are ready to commit.
  •   Paid Advertising: Paid advertising, such as PPC and social media ads, can be highly useful. They can gain impressions from highly targeted audiences and demographics.

Typically, a strong digital attraction strategy will include a combination of marketing methods.

Determining the specific needs of customers is essential. This process helps to both onboard new customers and retain existing relationships.

Trends in Digital Attraction for FinTech

An increasing digital attraction for FinTech and banking requires paying attention to ongoing trends.

Mobile-friendliness and intuitive designs are two important components of FinTech. Both of these come into play for digital attraction.

Having a FinTech platform optimized for mobile use provides tremendous value to customers. Likewise, an intuitive and responsive design is also helpful in attracting customers.

Besides mobile friendliness and design, several other digital factors affect digital attraction. These include:

  •   Branding: The way a FinTech company or bank brands itself is important. Branding helps to make a business more relatable to the customer.
  •   Social Media Presence: Social media is a valuable and powerful tool. It helps connect professionals directly with their customers. Plus, there are millions of users across the many social platforms. This makes social media a great place to seek out customers.
  •   Video Content: While written content is good, visual content can be more effective. Video content goes hand-in-hand with changing technologies. This makes it a complementary element for digital attraction.
  •   Engagement: For financial professionals new to the digital space, engagement is crucial. It helps you to connect with customers. Driving up engagement will help to attract more new customers to the company.

Using Social Media as a Tool for Digital Attraction

Since the days of MySpace, social media has only continued to grow. Over the past decade, social media has come to dominate the digital space. This growth in popularity makes social media a powerful tool for digital attraction.

Using social media as a primary digital marketing tool has several benefits, including:

  •   Building and Maintaining Relationships: Social media provides a much closer connection to audiences. Responding to comments and engaging with followers is important. This will help to both build and maintain relationships with customers.
  •   Boosting Revenue and Traffic: Heavy digital traffic passes through social media every day. Finding ways to direct this traffic to a business account is critical. It can help boost both sales and traffic on your pages.
  •   Creating a Digital Reputation: Customers trust businesses that offer transparency and accessibility. A strong social media presence can help achieve both. In addition, social media helps professionals build a digital reputation that can significantly affect success.
  •   Staying Ahead of Competition: Many top brands already use social media. These companies have acknowledged and benefitted from the advantages of social media. As such, establishing a presence on the platforms is the key to staying ahead of the competition.

This article will focus on digital attraction through TikTok. However, all social media platforms have powerful potential.

Instagram, Facebook, and Pinterest have all shown massive capabilities for boosting sales. These platforms are also great for building greater brand awareness.

Meanwhile, platforms such as LinkedIn and Twitter can help build a professional network. 

Creating a widespread social media presence aids in increasing digital attraction. A truly strong social media strategy will make use of multiple platforms.

The Role of Artificial Intelligence

Artificial intelligence plays a significant role in digital attraction.

If social media is the hero, then AI is the brainiac sidekick supporting the hero from afar. Social media provide the opportunity for tremendous growth. Once this growth occurs, however, it can be hard to keep up with the new influx of followers.

This is where AI comes in. The most common use for AI on social media is the creation of automated chatbots. These chatbots can serve several functions, including:

  •   Virtual Shopping Assistants: AI is super useful for helping customers to navigate a site and find the products or services they need.
  •   FAQ: FinTech is a new concept to many average consumers. Having AI set up to respond quickly to frequently asked questions is crucial. AI can help manage the influx of questions and concerns through automation.
  •   Customer Support: As a business’s following grows, the volume of messages received per day increases. AI helps provide 24/7 customer support even when a human representative is unavailable. A chatbot will often include a responsive and conversational design. This will help troubleshoot specific problems a customer is experiencing.

It is important to be cautious of the overuse of AI on social media. Many consumers see social media as the best way to connect directly with brands. If a bot authors every message sent to customers, this can feel disingenuous and be a turn-off.

Examining the Power of TikTok for Digital Attraction

Since its initial release in 2016, TikTok has grown immensely.

The social media app focuses mainly on short-form video content. However, users can also leave comments, send direct messages, and create direct responses to other videos.

Compared to other social media, the ability to go viral on the app is much more common.

TikTok uses a combination of both hashtags and an algorithm. This helps to create a personalized feed for each unique user.

Thinking in terms of digital attraction, this personalized content is key. It will help financial institutions on the app to target their ideal audiences.

Here are a few important considerations for using TikTok to drive digital attraction:

  •   Influencer Marketing: Like all social media, TikTok is full to the brim with influencers. Taking advantage of this and partnering with influencers to promote a business is smart. This will help a company to reach a much larger audience.
  •   TikTok Ads: TikTok offers a few different styles of ads. As it stands now, Facebook and Instagram still reign supreme in offering effective social media as. However, using TikTok ads now can help businesses prepare for the future as the app continues to grow.
  •   Bite-Size Education: Though TikTok is primarily used by younger people, finance is still a profitable niche on the platform. The key is to offer short and simple video content centered around education. Providing useful educational resources on finance will help build trust in an audience.

The Demographics of TikTok

In the U.S. alone, TikTok had roughly 65.9 million users in 2020. Statista predicts this number to increase at a rate of 22 percent each year.

TikTok’s most notable demographic is the age group it attracts. The app has a reputation.

Here are some stats to consider about TikTok’s age demographics in the U.S.:

  •       People aged 10 to 19 make up 25 percent of the user base in the U.S. This gives them the title of the largest age group on the app.
  •       The second-largest group is aged 20 to 29 and makes up 22.4 percent of the user base.
  •       The third-largest group is people aged 30 to 39 and makes up 21.7 percent of the user base.
  •       The fourth-largest is aged 40 to 49 and makes up 20.3 percent of the user base.
  •       Finally, people aged 50 or above make up only 11 percent of the app’s users.

Looking at these numbers, it’s clear to see that TikTok attracts more than just teens.

While the largest group is also the youngest, people aged 20 through 49 also make up a significant portion of the user base.

TikTok and FinTech

Finance and teenagers are words not commonly used together. Yet, despite this, the topic of finance is a hot one on the teenager-dominated TikTok.

When looking at TikTok’s userbase, there is a clear interest in both finance and technology.

On the finance side, users are particularly interested in the following topics:

  •       Investing and the stock market
  •       Cryptocurrencies
  •       Personal finance tips and advice

Younger generations often get a bad reputation for being irresponsible with money. However, money and finance are major points of concern for many Gen Z adults.

The Common Stressor

81 percent of Gen Z adults view money as a common stressor, according to a 2018 American Psychological Association survey. 46 percent of those surveyed also reported stress over the economy.

As a result, financial videos on the platform can perform very well. It all depends on the content being produced and targeting the right audience.

Connecting with Younger Generations and “Fin-fluencers”

With the rising interest in investment and cryptocurrency, a new breed of influencer has emerged – the fin-fluencer.

We have already discussed the usefulness of connecting with social media influencers. Focusing on influencers who create FinTech-related content is highly recommended.

Some younger consumers are inherently distrustful of branded accounts. They don’t want to feel like they are being tricked into making purchases or decisions.

By focusing on fin-fluencers, banks can access audiences already interested in learning more about finance. In addition, this is an excellent method for attracting customers who may be resistant to brand accounts but fans of influencers.

Final Thoughts: Is TikTok the Digital Attraction Hub for Banks?

So, is TikTok the future of FinTech marketing? The answer is – maybe.

Like any social media platform, TikTok has its pros and cons. Having a fairly young user base can make it more difficult for brands to connect. However, the younger audiences found on the app are not without interest in finance.

The key when using TikTok is to leverage its best features to your advantage. For example, connecting with influencers in the finance niche and providing educational resources are two great ways to build a loyal TikTok following.

As more banks embrace FinTech and digital transformation, digital attraction will continue to swell in importance. When used wisely, apps like TikTok can help banks to find new audiences and future success in the years to come. 

Image Credit: cottonbro; pexels; thank you!

Deborah Boyland

Deborah Boyland is the Head of Marketing at CPQi, the leading provider of digital transformation for financial markets. Deborah has been providing content marketing to FinTechs for over 6 years, and has a strong passion for ensuring business leaders are equipped with the information they need to market effectively.

Politics

How Alternative Data is Changing the Finance Sector

Published

on

How Alternative Data is Changing the Finance Sector


Alternative data has been touted as the future for various companies. Financial services companies have taken a particular interest in the field as it has the potential to either provide completely novel signals or improve existing investment strategies.

However, understanding the scale and importance of alternative data has always been challenging as businesses in the sector are often shrouded in mystery. Investing is extremely competitive as alpha often depends on the signal strength other companies can acquire.

Now, however, the veil has been lifted, even if slightly. Finally, there is enough data to understand how far alternative data and web scraping have entrenched themselves into the industry, allowing us to understand their importance.

What is alternative data and web scraping?

Alternative data is a negatively defined term meaning everything that is not traditional data. The latter is considered to be everything that’s published regularly according to regulations, government action, or other oversight. In other words, it’s all the data from statistics departments, financial reports, press releases, etc.

Since alternative data is defined negatively, it’s every information source that’s not traditional. While the definition is somewhat broad, alternative data does have its characteristics. Namely, it’s almost always unstructured, comes in various formats (i.e., text, images, videos), and often is extracted for a highly specific purpose.

Data acquisition is significantly more complicated because both the sources and the formats are varied. Data as a Service (DaaS) businesses can resolve most of the acquisition issues; however, finding one that holds the necessary information can be complex.

Web Scraping and in-house solutions in alternative data acquisition

Many companies turn to building in-house solutions for alternative data acquisition. One of the primary methods for doing so is called web scraping. In short, it’s a method of automating online public data collection by employing bots.

These solutions go through a starting set of URLs and download the data stored within. Most bots will also further collect any URLs stored on the page for continued crawling. As a result, they can blaze through many sources within seconds or minutes.

Collected data is then delivered and parsed for analysis. Some of it, such as pricing information, can be integrated into completely automated solutions. Other data, such as anything from which investment signals might be extracted, is analyzed manually by dedicated professionals.

Web scraping is shaping the financial services industry

As mentioned above, financial services and investment companies have taken a particular interest in web scraping earlier than nearly anyone else. These businesses thrive upon gaining an informational edge over their competitors or the market as a whole.

So, in some sense, it was no surprise when web scraping turned out to be a key player in the financial services industry. So we surveyed over 1000 decision-makers in the financial services industry across the US and UK regions to find out more about how data is being managed in these companies.

Image Credit: Oxylabs; Thank you!

 

While internal data, as expected, remains the primary source of insight for all decision-making, web scraping has nearly overtaken it in the financial services industry. Almost 71% of our respondents have indicated that they use web scraping to help clients make business decisions.

Web Scraping and Growth Tendencies

Other insights are even more illuminating. For example, while web scraping has shown clear growth tendencies, we didn’t expect 80% of the survey respondents to believe that the focus will shift towards it even more in the coming 12 months. Nevertheless, these trends indicate a clear intent to change the dominant data acquisition methods in the industry.

Finally, there’s reason to believe that the performance of web scraping is equally as impressive. There may have been reason to believe that the process of automated data collection is simply a byproduct of hype. Big data has been a business buzzword for the longest time, so it may seem that some of that emotion might have transferred to web scraping.

Implementing Web Scraping

However, those who have implemented web scraping do not seem to think it’s pure hype. Over a quarter of those who have implemented the process believe it has had the most significant positive impact on revenue. Additionally, nearly half (44%) of all respondents plan to invest in web scraping the most in the coming years.

Our overall findings are consistent across regions. As the US and UK are such significant players in the sector, the conclusions likely extend to global trends, barring some exceptions where web scraping might be trickier to implement due to legal differences.

The survey has only uncovered major differences in how web scraping is handled, not whether it’s worthwhile. For example, in the US, it’s rarely the case that compliance or web scraping itself would be outsourced (12% & 8%, respectively). On the other hand, the UK is much more lenient regarding outsourced departments (22% and 15% for outsourced compliance and outsourced web scraping, respectively).

Conclusion

While the way data is being managed in the financial services industry has been shrouded in mystery for many years, we’re finally getting a better glimpse into the trends and changes the sector has been undergoing. As we can see, web scraping and alternative data play a major role in shaping the industry.

Becoming the true first adopters of web scraping, however, I think, is only the beginning. Both the technology and the industry are still maturing. Therefore, I firmly believe we will see many new and innovative developments in data extraction and analysis in the finance sector, which novel web scraping applications will head.

Image Credit: Pixabay; Pexels; Thank you!

Julius Cerniauskas

CEO at Oxylabs

Julius Cerniauskas is Lithuania’s technology industry leader & the CEO of Oxylabs, covering topics on web scraping, big data, machine learning & tech trends.

Continue Reading

Politics

How to Implement a Splintered Content Strategy

Published

on

How to Use SEO if You Have No Experience


Content makes the marketing world go round. It doesn’t matter what your overarching marketing strategy looks like – content is the fuel source. You can’t go anywhere without it. The biggest problem is that content can be expensive to create. We operate in a business world where thousands of pieces of content are created every single second. Trying to keep up can feel like an expensive exercise in futility.

The key to successful digital marketing in an era of saturated online channels is extracting maximum value from your content. If the traditional approach is built around “single-use” content, you need to switch gears and opt for a multi-use approach that allows you to leverage the same content over and over again. One way to do this is by building out a “splintered” content strategy.

What is a Splintered Content Strategy?

The best way to understand the splintered approach to content creation is via an analogy. In the analogy, you start with one core topic that relates to your brand and readers. This topic is represented as a tree. Then, when you want to get more value out of the tree, you chop it down into big logs. These logs represent sub-topics of more significant topics. These logs can then be split and broken down into even smaller niches. (And this process of splintering the original topic into smaller/different pieces of micro-content can go on and on.)

Content splintering is not to be confused with content republishing or duplication. The mission isn’t to reuse the same content so much as to extract more value from the original content by finding new uses, applications, angles, and related topics. Not only does this approach help you maximize your ROI, but it also creates a tightly-correlated and highly-consistent web of content that makes both search engines and readers happy.

What You’ll Need for a Splintered Content Strategy

In order to get started with creating splintered content, you’ll need a few things:

  • Keyword research. The process always begins with keyword research. First, you need to perform detailed SEO research to zero in on the keywords that specifically resonate with your target audience. This feeds your topic selection and actual content creation. (You can think of keyword research as developing a blueprint. Just like you can’t build a house without plans, you can’t implement a splintered content strategy without keyword research.)
  • General topic. Armed with the right keywords, you can begin the process of choosing a broad topic. A general topic is a very basic, overarching topic that speaks to a specific target audience.
  • Content writers. You’ll need a team of people to actually create the content. While it’s possible to do this on your own, you ideally want to hire content writers to do the heavy lifting on your behalf. This allows you to focus on the big-picture strategy.
  • Consistency. A splintered content strategy requires consistency. Yes, there are ways to automate and streamline, but you have to ensure that you’re consistently churning out content (and that the content is closely correlated).

A good splintered content strategy takes time to develop. So, in addition to everything mentioned above, you’ll also need patience and resilience. Watch what’s working, and don’t be afraid to iterate. And remember one thing: You can always splinter a piece of content into more pieces.

How to Plan and Execute a Splintered Content Strategy

Now that we’re clear on splintered content and some of the different resources you’ll need to be successful, let’s dig into the actual how-to by looking at an illustration of how this could play out. (Note: This is not a comprehensive breakdown. These are merely some ideas you can use. Feel free to add, subtract, or modify to fit your own strategy needs.)

Typically, a splintered content strategy begins with a pillar blog post. This is a meaty, comprehensive resource on a significant topic that’s relevant to your target audience. For example, a financial advisor might write a pillar blog post on “How to Sell Your House.” This post would be several thousand words and include various subheadings that drill into specific elements of selling a house.

The most important thing to remember with a pillar post is that you don’t want to get to micro with the topic. You certainly want to get micro with the targeting – meaning you’re writing to a very specific audience – but not with the topic. Of course, you can always zoom in within the blog post, and with the splinters it produces, but it’s much more difficult to zoom out.

  • Turn the Blog Post Into a Podcast Series

Once you have your pillar piece of content in place, the splintering begins. One option is to turn the blog post into a series of podcast episodes. Each episode can touch on one of the subheadings.

If these are the subheadings from the blog post, they would look like this:

  • How to prepare for selling > Episode 1
  • How to find a real estate agent > Episode 2
  • How to declutter and stage your property > Episode 3
  • How to price your property > Episode 4
  • How to choose the right offer > Episode 5
  • How to negotiate with repair requests > Episode 6
  • How to prepare for closing day > Episode 7
  • How to move out > Episode 8

Depending on the length of your pillar content, you may have to beef up some of the sections from the original post to create enough content for a 20- to 30-minute episode, but you’ll at least have a solid outline of what you want to cover.

  • Turn Podcasts Into YouTube Videos

Here’s a really easy way to multiply your content via splintering. Just take the audio from each podcast and turn it into a YouTube video with graphic overlays and stock video footage. (Or, if you think ahead, you can record a video of you recording the podcast – a la “Joe Rogan” style.)

  • Turn YouTube Videos Into Social Clips

Cut your 20-minute YouTube video down into four or five different three-minute clips and soundbites for social media. These make for really sticky content that can be shared and distributed very quickly.

  • Turn Each Podcast Into Long-Form Social Posts

Take each podcast episode you recorded and turn them into their own long-form social posts. Of course, some of this content will cover information already hashed out in the original pillar post, but that’s fine. As long as you aren’t duplicating content word-for-word, it’s totally fine if there’s overlap.

  • Turn Long-Form Social Posts Into Tweets

Your long-form social posts can then be turned into a dozen or more individual short-form tweets. Find the best sentences, most shocking statements, and most powerful statistics from these posts and schedule a series of automated posts to go out over a few weeks. (You can automate this process using a tool like Hootsuite or Buffer.)

  • Turn Content Into an Email Campaign

Finally, take your best content and turn it into a series of emails to your list. You may even be able to set up an autoresponder series that slowly drips on people with a specific call-to-action.

Using the example from this article, a real estate agent might send out a series of 10 emails over 30 days with a call-to-action to get a free listing valuation.

Take Your Content Strategy to the Next Level With Splintered Content Strategy

There isn’t necessarily a proper way to implement a splintered content strategy. But, like everything regarding marketing, there’s ample room for creativity.

Conclusion

Use the parts of this article that resonate with you and adapt the rest to fit your vision for your content. Just remember the core objective of this entire approach: content maximization.

The goal is to get the most value out of your content as possible. And you do that by turning each piece of content you create into at least one more piece of content. If you do this efficiently, you will be successful.

Image Credit: by Kampus Production; Pexels; Thank you!

Timothy Carter

Chief Revenue Officer

Timothy Carter is the Chief Revenue Officer of the Seattle digital marketing agency SEO.co, DEV.co & PPC.co. He has spent more than 20 years in the world of SEO and digital marketing leading, building and scaling sales operations, helping companies increase revenue efficiency and drive growth from websites and sales teams. When he’s not working, Tim enjoys playing a few rounds of disc golf, running, and spending time with his wife and family on the beach — preferably in Hawaii with a cup of Kona coffee. Follow him on Twitter @TimothyCarter

Continue Reading

Politics

Successful AI Requires the Right Data Architecture – Here’s How

Published

on

Successful AI Requires the Right Data Architecture - Here’s How


For companies that can master it, Artificial Intelligence (AI) promises to deliver cost savings, a competitive edge, and a foothold in the future of business. But while the rate of AI adoption continues to rise, the level of investment is often out of kilter with monetary returns. To be successful with AI you’ll want the right data architecture. This article tells you how.

Currently, only 26% of AI initiatives are being put into widespread production with an organization. Unfortunately, this means many companies spend a lot of time on AI deployments without seeing tangible ROI.

All Companies Must Perform Like a Tech Company

Meanwhile, in a world where every company must perform like a tech company to stay ahead, there’s increasing pressure on technical teams and Engineering and IT leaders to harness data for commercial growth. Especially as spending on cloud storage increases, businesses are keen to improve efficiency and maximize ROI from data that are costly to store. But unfortunately, they don’t have the luxury of time.

To meet this demand for rapid results, mapping data architecture can no longer stretch on for months with no defined goal. At the same time, focusing on standard data cleaning or Business Intelligence (BI) reporting is regressive.

Tech leaders must build data architecture with AI at the forefront of their objectives.

To do otherwise — they’ll find themselves retrofitting it later. In today’s businesses, data architecture should drive toward a defined outcome—and that outcome should include AI applications with clear benefits for end-users. This is key to setting your business up for future success, even if you’re not (yet) ready for AI.

Starting From Scratch? Begin With Best Practices for Data

Data Architecture requires knowledge. There are a lot of tools out there, and how you stitch them together is governed by your business and what you need to achieve. The starting point is always a literature review to understand what has worked for similar enterprises, as well as a deep dive into the tools you’re considering and their use cases.

Microsoft has a good repository for data models, plus a lot of literature on best data practices. There are also some great books out there that can help you develop a more strategic, business-minded approach to data architecture.

Prediction Machines by Ajay Agarwal, Joshua Gans, and Avi Goldfarb is ideal for understanding AI at a more foundational level, with functional insights into how to use AI and data to run efficiently. Finally, for more seasoned engineers and technical experts, I recommend Designing Data-Intensive Applications by Martin Kleppmann. This book will give you the very latest thinking in the field, with actionable guidance on how to build data applications, architecture, and strategy.

Three Fundamentals for a Successful Data Architecture

Several core principles will help you design a data architecture capable of powering AI applications that deliver ROI. Think of the following as compass points to check yourself against whenever you’re building, formatting, and organizing data:

  • Building Toward an Objective:

    Always have your eye on the business outcome you’re working toward as you build and develop your data architecture is the cardinal rule. In particular, I recommend looking at your company’s near-term goals and aligning your data strategy accordingly.

    For example, if your business strategy is to achieve $30M in revenues by year-end, figure out how you can use data to drive this. It doesn’t have to be daunting: break the more important goal down into smaller objectives, and work toward those.

  • Designing for Rapid Value Creation:

    While setting a clear objective is key, the end solution must always be agile enough to adapt to changing business needs. For example, small-scale projects might grow to become multi-channel, and you need to build with that in mind. Fixed modeling and fixed rules will only create more work down the line.

    Any architecture you design should be capable of accommodating more data as it becomes available and leveraging that data toward your company’s latest goals. I also recommend automating as much as you can. This will help you make a valuable business impact with your data strategy quickly and repeatedly over time.

    For example, automate this process from the get-go if you know you need to deliver monthly reporting. That way, you’ll only spend time on it during the first month. From there, the impact will be consistently efficient and positive.

  • Knowing How to Test for Success:

    To keep yourself on the right track, it’s essential to know if your data architecture is performing effectively. Data architecture works when it can (1) support AI and (2) deliver usable, relevant data to every employee in the business. Keeping close to these guardrails will help ensure your data strategy is fit for purpose and fit for the future.

The Future of Data Architecture: Innovations to Know About

While these key principles are a great starting place for technical leaders and teams, it’s also important not to get stuck in one way of doing things. Otherwise, businesses risk missing opportunities that could deliver even greater value in the long term. Instead, tech leaders must constantly be plugged into the new technologies coming to market that can enhance their work and deliver better outcomes for their business:

  • Cheaper Processing:

    We’re already seeing innovations making processing more cost-efficient. This is critical because many of the advanced technologies being developed require such high levels of computer power they only exist in theory. Neural networks are a prime example. But as the required level of computer power becomes more feasible, we’ll have access to more sophisticated ways of solving problems.

    For example, a data scientist must train every machine learning model. But in the future, there’s potential to build models that can train other models. Of course, this is still just a theory, but we’ll definitely see innovation like this accelerate as processing power becomes more accessible.

  • Bundled Tools:

    Additionally, when it comes to apps or software that can decrease time to value for AI, we’re in a phase now where most technology available can only do one thing well. The tools needed to productionize AI — like storage, machine learning providers, API deployment, and quality control — are unbundled.

    Currently, businesses risk wasting precious time simply figuring out which tools they need and how to integrate them. But technology is gradually emerging that can help solve for multiple data architecture use cases, as well as databases that are specialized for powering AI applications.

    These more bundled offerings will help businesses put AI into production faster. It’s similar to what we’ve seen in the fintech space. Companies initially focused on being the best in one core competency before eventually merging to create bundled solutions.

  • Data Marts vs. Data Warehouses:

    Looking further into the future, it seems safe to predict that data lakes will become the most important AI and data stack investment for all organizations. Data lakes will help organizations understand predictions and how best to execute those insights. I see data marts becoming increasingly valuable for the future.

    Marts deliver the same data to every team in a business in a format they can understand. For example, Marketing and Finance teams see the same data represented in metrics that are familiar and – most importantly – a format they can use. The new generation of data marts will have more than dimensions, facts, and hierarchy. They won’t just be slicing and dicing information — but will support decision-making within specific departments.

Conclusion

As the technology continues to develop, it’s critical that businesses stay up to speed, or they’ll get left behind. That means tech leaders staying connected to their teams, and allowing them to bring new innovations to the table.

Even as a company’s data architecture and AI applications grow more robust, it’s essential to make time to experiment, learn and (ultimately) innovate.

Image Credit: by Polina Zimmerman; Pexels; Thank you!

Atul Sharma

Atul founded Decision Intelligence company Peak in 2015 with Richard Potter and David Leitch. He has played a pivotal role in shaping Peak’s Decision Intelligence platform, which emerged as an early leader in a category that is expected to be the biggest technology movement for a generation. Peak’s platform is used by leading brands including Nike, Pepsico, KFC and Sika.
On a mission to change the way the world works, the tech scaleup has grown quickly over the last seven years and now numbers over 250 people globally. Regularly named a top place to work in the UK, this year Peak received the Best Companies 3-star accreditation, which recognizes extraordinary levels of employee engagement.
Prior to Peak, Atul spent over 20 years working in data architecture and data engineering. He has worked on designing and implementing data integration and data warehouse engagements for global companies such as Morrisons Plc, The Economist, HBOS, Admin Re (Part of Swiss Re) and Shell.

Continue Reading

Copyright © 2021 Seminole Press.