Connect with us

Tech

Your microbiome ages as you do—and that’s a problem

Published

on

Your microbiome ages as you do—and that’s a problem


These ecosystems appear to change as we age—and these changes can potentially put us at increased risk of age-related diseases. So how can we best look after them as we get old? And could an A-grade ecosystem help fend off diseases and help us lead longer, healthier lives?

It’s a question I’ve been pondering this week, partly because I know a few people who have been put on antibiotics for winter infections. These drugs—lifesaving though they can be—can cause mass destruction of gut microbes, wiping out the good along with the bad. How might people who take them best restore a healthy ecosystem afterwards?

I also came across a recent study in which scientists looked at thousands of samples of people’s gut microbe populations to see how they change with age. The standard approach to working out what microbes are living in a person’s gut is to look at feces. The idea is that when we have a bowel movement, we shed plenty of gut bacteria. Scientists can find out which species and strains of bacteria are present to get an estimate of what’s in your intestines.

In this study, a team based at University College Cork in Ireland analyzed data that had already been collected from 21,000 samples of human feces. These had come from people all over the world, including Europe, North and South America, Asia, and Africa. Nineteen nationalities were represented. The samples were all from adults between 18 and 100. 

The authors of this study wanted to get a better handle on what makes for a “good” microbiome, especially as we get older. It has been difficult for microbiologists to work this out. We do know that some bacteria can produce compounds that are good for our guts. Some seem to aid digestion, for example, while others lower inflammation.
 
But when it comes to the ecosystem as a whole, things get more complicated. At the moment, the accepted wisdom is that variety seems to be a good thing—the more microbial diversity, the better. Some scientists believe that unique microbiomes also have benefits, and that a collection of microbes that differs from the norm can keep you healthy.
 
The team looked at how the microbiomes of younger people compared with those of older people, and how they appeared to change with age. The scientists also looked at how the microbial ecosystems varied with signs of unhealthy aging, such as cognitive decline, frailty, and inflammation.
 
They found that the microbiome does seem to change with age, and that, on the whole, the ecosystems in our guts do tend to become more unique—it looks as though we lose aspects of a general “core” microbiome and stray toward a more individual one.
 
But this isn’t necessarily a good thing. In fact, this uniqueness seems to be linked to unhealthy aging and the development of those age-related symptoms listed above, which we’d all rather stave off for as long as possible. And measuring diversity alone doesn’t tell us much about whether the bugs in our guts are helpful or not in this regard.
 
The findings back up what these researchers and others have seen before, challenging the notion that uniqueness is a good thing. Another team has come up with a good analogy, which is known as the Anna Karenina principle of the microbiome: “All happy microbiomes look alike; each unhappy microbiome is unhappy in its own way.”
 
Of course, the big question is: What can we do to maintain a happy microbiome? And will it actually help us stave off age-related diseases?
 
There’s plenty of evidence to suggest that, on the whole, a diet with plenty of fruit, vegetables, and fiber is good for the gut. A couple of years ago, researchers found that after 12 months on a Mediterranean diet—one rich in olive oil, nuts, legumes, and fish, as well as fruit and veg—older people saw changes in their microbiomes that might benefit their health. These changes have been linked to a lowered risk of developing frailty and cognitive decline.
 
But at the individual level, we can’t really be sure of the impact that changes to our diets will have. Probiotics are a good example; you can chug down millions of microbes, but that doesn’t mean that they’ll survive the journey to your gut. Even if they do get there, we don’t know if they’ll be able to form niches in the existing ecosystem, or if they might cause some kind of unwelcome disruption. Some microbial ecosystems might respond really well to fermented foods like sauerkraut and kimchi, while others might not.
 
I personally love kimchi and sauerkraut. If they do turn out to support my microbiome in a way that protects me against age-related diseases, then that’s just the icing on the less-microbiome-friendly cake.

To read more, check out these stories from the Tech Review archive:
 
At-home microbiome tests can tell you which bugs are in your poo, but not much more than that, as Emily Mullin found.
 
Industrial-scale fermentation is one of the technologies transforming the way we produce and prepare our food, according to these experts.
 
Can restricting your calorie intake help you live longer? It seems to work for monkeys, as Katherine Bourzac wrote in 2009. 
 
Adam Piore bravely tried caloric restriction himself to find out if it might help people, too. Teaser: even if you live longer on the diet, you will be miserable doing so. 

From around the web:

Would you pay $15,000 to save your cat’s life? More people are turning to expensive surgery to extend the lives of their pets. (The Atlantic)
 
The World Health Organization will now start using the term “mpox” in place of “monkeypox,” which will be phased out over the next year. (WHO)
 
After three years in prison, He Jiankui—the scientist behind the infamous “CRISPR babies”—is attempting a comeback. (STAT)
 
Tech that allows scientists to listen in on the natural world is revealing some truly amazing discoveries. Who knew that Amazonian sea turtles make more than 200 distinct sounds? And that they start making sounds before they even hatch? (The Guardian)
 
These recordings provide plenty of inspiration for musicians. Whale song is particularly popular. (The New Yorker)
 
Scientists are using tiny worms to diagnose pancreatic cancer. The test, launched in Japan, could be available in the US next year. (Reuters)

Tech

The Download: generative AI for video, and detecting AI text

Published

on

The original startup behind Stable Diffusion has launched a generative AI for video


The original startup behind Stable Diffusion has launched a generative AI for video

What’s happened: Runway, the generative AI startup that co-created last year’s breakout text-to-image model Stable Diffusion, has released an AI model that can transform existing videos into new ones by applying styles from a text prompt or reference image.

What it does: In a demo reel posted on its website, Runway shows how the model, called Gen-1, can turn people on a street into claymation puppets, and books stacked on a table into a cityscape at night. Other recent text-to-video models can generate very short video clips from scratch, but because Gen-1adapts existing footage it can produce much longer videos.

Why it matters: Last year’s explosion in generative AI was fueled by the millions of people who got their hands on powerful creative tools for the first time and shared what they made, and Runway hopes Gen-1 will have a similar effect on generated videos. Read the full story.

—Will Douglas Heaven

Why detecting AI-generated text is so difficult (and what to do about it)

Last week, OpenAI unveiled a tool that can detect text produced by its AI system ChatGPT. But if you’re a teacher who fears the coming deluge of ChatGPT-generated essays, don’t get too excited.

Continue Reading

Tech

Why detecting AI-generated text is so difficult (and what to do about it)

Published

on

Why detecting AI-generated text is so difficult (and what to do about it)


This tool is OpenAI’s response to the heat it’s gotten from educators, journalists, and others for launching ChatGPT without any ways to detect text it has generated. However, it is still very much a work in progress, and it is woefully unreliable. OpenAI says its AI text detector correctly identifies 26% of AI-written text as “likely AI-written.” 

While OpenAI clearly has a lot more work to do to refine its tool, there’s a limit to just how good it can make it. We’re extremely unlikely to ever get a tool that can spot AI-generated text with 100% certainty. It’s really hard to detect AI-generated text because the whole point of AI language models is to generate fluent and human-seeming text, and the model is mimicking text created by humans, says Muhammad Abdul-Mageed, a professor who oversees research in natural-language processing and machine learning at the University of British Columbia

We are in an arms race to build detection methods that can match the latest, most powerful models, Abdul-Mageed adds. New AI language models are more powerful and better at generating even more fluent language, which quickly makes our existing detection tool kit outdated. 

OpenAI built its detector by creating a whole new AI language model akin to ChatGPT that is specifically trained to detect outputs from models like itself. Although details are sparse, the company apparently trained the model with examples of AI-generated text and examples of human-generated text, and then asked it to spot the AI-generated text. We asked for more information, but OpenAI did not respond. 

Last month, I wrote about another method for detecting text generated by an AI: watermarks. These act as a sort of secret signal in AI-produced text that allows computer programs to detect it as such. 

Researchers at the University of Maryland have developed a neat way of applying watermarks to text generated by AI language models, and they have made it freely available. These watermarks would allow us to tell with almost complete certainty when AI-generated text has been used. 

The trouble is that this method requires AI companies to embed watermarking in their chatbots right from the start. OpenAI is developing these systems but has yet to roll them out in any of its products. Why the delay? One reason might be that it’s not always desirable to have AI-generated text watermarked. 

One of the most promising ways ChatGPT could be integrated into products is as a tool to help people write emails or as an enhanced spell-checker in a word processor. That’s not exactly cheating. But watermarking all AI-generated text would automatically flag these outputs and could lead to wrongful accusations.

Continue Reading

Tech

The original startup behind Stable Diffusion has launched a generative AI for video

Published

on

The original startup behind Stable Diffusion has launched a generative AI for video


Set up in 2018, Runway has been developing AI-powered video-editing software for several years. Its tools are used by TikTokers and YouTubers as well as mainstream movie and TV studios. The makers of The Late Show with Stephen Colbert used Runway software to edit the show’s graphics; the visual effects team behind the hit movie Everything Everywhere All at Once used the company’s tech to help create certain scenes.  

In 2021, Runway collaborated with researchers at the University of Munich to build the first version of Stable Diffusion. Stability AI, a UK-based startup, then stepped in to pay the computing costs required to train the model on much more data. In 2022, Stability AI took Stable Diffusion mainstream, transforming it from a research project into a global phenomenon. 

But the two companies no longer collaborate. Getty is now taking legal action against Stability AI—claiming that the company used Getty’s images, which appear in Stable Diffusion’s training data, without permission—and Runway is keen to keep its distance.

Gen-1 represents a new start for Runway. It follows a smattering of text-to-video models revealed late last year, including Make-a-Video from Meta and Phenaki from Google, both of which can generate very short video clips from scratch. It is also similar to Dreamix, a generative AI from Google revealed last week, which can create new videos from existing ones by applying specified styles. But at least judging from Runway’s demo reel, Gen-1 appears to be a step up in video quality. Because it transforms existing footage, it can also produce much longer videos than most previous models. (The company says it will post technical details about Gen-1 on its website in the next few days.)   

Unlike Meta and Google, Runway has built its model with customers in mind. “This is one of the first models to be developed really closely with a community of video makers,” says Valenzuela. “It comes with years of insight about how filmmakers and VFX editors actually work on post-production.”

Gen-1, which runs on the cloud via Runway’s website, is being made available to a handful of invited users today and will be launched to everyone on the waitlist in a few weeks.

Last year’s explosion in generative AI was fueled by the millions of people who got their hands on powerful creative tools for the first time and shared what they made with them. Valenzuela hopes that putting Gen-1 into the hands of creative professionals will soon have a similar impact on video.

“We’re really close to having full feature films being generated,” he says. “We’re close to a place where most of the content you’ll see online will be generated.”

Continue Reading

Copyright © 2021 Seminole Press.