Now it’s responsible for helping to clean up the industry.
In July the agency, which has about 600 employees and a roughly $900 million budget, added “and Carbon Management” to its name, signaling a major part of its new mission: to help develop the technology and build an industry that can prevent the release of carbon dioxide from power plants and factories, suck it out of the air, transport it, and permanently store it.
The Office of Fossil Energy and Carbon Management (FECM) continues to operate a research division focused on the production of oil, gas, and coal. But it’s now named the Office of Resource Sustainability and its central task is minimizing the impacts from the production of those fossil fuels, says Jennifer Wilcox, a carbon removal researcher, who joined the office at the start of the Biden administration. She now serves as principal deputy assistant secretary of FECM, overseeing both research and development divisions along with Brad Crabtree, the assistant secretary of the office.
FECM’s efforts will be turbocharged by a series of recent federal laws, including the Inflation Reduction Act, which significantly boosts tax subsidies for carbon capture, removal, and storage. The CHIPS and Science Act, signed into law in August, authorizes (but doesn’t actually appropriate) $1 billion for carbon removal research and development at FECM. But most notably, the Infrastructure Investment and Jobs Act that Biden enacted in late 2021 will direct some $12 billion into carbon capture and removal, including pipelines and storage facilities.
The FECM will play a key role in determining where much of the money goes.
Jennifer Wilcox, a prominent carbon removal researcher, is the principal deputy assistant secretary at the US Department of Energy’s Office of Fossil Energy and Carbon Management.
Following the passage of the infrastructure law, the Department of Energy announced a $2.5 billion investment to accelerate and validate ways of safely storing carbon dioxide in underground formations, as well as $3.5 billion in funding for pilot and demonstration projects aimed at preventing nearly all carbon emissions from fossil-fuel power plants and industrial facilities, such as those producing cement, pulp and paper, and iron and steel. It has also moved ahead with a $3.5 billion program to develop four regional hubs for direct-air-capture projects, an effort to develop factories that can suck at least 1 million metric tons of carbon dioxide from the air each year.
Last week, I spoke with Wilcox and Noah Deich, deputy assistant secretary for carbon management within FECM, about the new direction at the Department of Energy, where the billions of dollars will be put to work, and how they’re striving to address concerns about carbon capture and the ongoing harms from fossil fuels.
What are chemical pollutants doing to our bodies? It’s a timely question given that last week, people in Philadelphia cleared grocery shelves of bottled water after a toxic leak from a chemical plant spilled into a tributary of the Delaware River, a source of drinking water for 14 million people. And it was only last month that a train carrying a suite of other hazardous materials derailed in East Palestine, Ohio, unleashing an unknown quantity of toxic chemicals.
There’s no doubt that we are polluting the planet. In order to find out how these pollutants might be affecting our own bodies, we need to work out how we are exposed to them. Which chemicals are we inhaling, eating, and digesting? And how much? The field of exposomics, which seeks to study our exposure to pollutants, among other factors, could help to give us some much-needed answers.Read the full story.
—Jessica Hamzelou
This story is from The Checkup, Jessica’s weekly biotech newsletter. Sign up to receive it in your inbox every Thursday.
Read more:
+ The toxic chemicals all around us. Meet Nicolette Bugher, a researcher working to expose the poisons lurking in our environment and discover what they mean for human health. Read the full story.
+ Building a better chemical factory—out of microbes. Professor Kristala Jones Prather is helping to turn microbes into efficient producers of desired chemicals. Read the full story.
+ Microplastics are messing with the microbiomes of seabirds. The next step is to work out what this might mean for their health—and ours. Read the full story.
People are gathering in virtual spaces to relax, and even sleep, with their headsets on. VR sleep rooms are becoming popular among people who suffer from insomnia or loneliness, offering cozy enclaves where strangers can safely find relaxation and company—most of the time.
Each VR sleep room is created to induce calm. Some imitate beaches and campsites with bonfires, while others re-create hotel rooms or cabins. Soundtracks vary from relaxing beats to nature sounds to absolute silence, while lighting can range from neon disco balls to pitch-black darkness.
The opportunity to sleep in groups can be particularly appealing to isolated or lonely people who want to feel less alone, and safe enough to fall asleep. The trouble is, what if the experience doesn’t make you feel that way? Read the full story.
—Tanya Basu
Inside the conference where researchers are solving the clean-energy puzzle
There are plenty of tried-and-true solutions that can begin to address climate change right now: wind and solar power are being deployed at massive scales, electric vehicles are coming to the mainstream, and new technologies are helping companies make even fossil-fuel production less polluting.
But as we knock out the easy climate wins, we’ll also need to get creative to tackle harder-to-solve sectors and reach net-zero emissions.
The Advanced Research Projects Agency for Energy (ARPA-E) funds high-risk, high-reward energy research projects, and each year the agency hosts a summit where funding recipients and other researchers and companies in energy can gather to talk about what’s new in the field.
As I listened to presentations, met with researchers, and—especially—wandered around the showcase, I often had a vague feeling of whiplash. Standing at one booth trying to wrap my head around how we might measure carbon stored by plants, I would look over and see another group focused on making nuclear fusion a more practical way to power the world.
There are plenty of tried-and-true solutions that can begin to address climate change right now: wind and solar power are being deployed at massive scales, electric vehicles are coming to the mainstream, and new technologies are helping companies make even fossil-fuel production less polluting. But as we knock out the easy wins, we’ll also need to get creative to tackle harder-to-solve sectors and reach net-zero emissions. Here are a few intriguing projects from the ARPA-E showcase that caught my eye.
Vaporized rocks
“I heard you have rocks here!” I exclaimed as I approached the Quaise Energy station.
Quaise’s booth featured a screen flashing through some fast facts and demonstration videos. And sure enough, laid out on the table were two slabs of rock. They looked a bit worse for wear, each sporting a hole about the size of a quarter in the middle, singed around the edges.
These rocks earned their scorch marks in service of a big goal: making geothermal power possible anywhere. Today, the high temperatures needed to generate electricity using heat from the Earth are only accessible close to the surface in certain places on the planet, like Iceland or the western US.
Geothermal power could in theory be deployed anywhere, if we could drill deep enough. Getting there won’t be easy, though, and could require drilling 20 kilometers (12 miles) beneath the surface. That’s deeper than any oil and gas drilling done today.
Rather than grinding through layers of granite with conventional drilling technology, Quaise plans to get through the more obstinate parts of the Earth’s crust by using high-powered millimeter waves to vaporize rock. (It’s sort of like lasers, but not quite.)